
WebTreeView.NET 1.0

WebTreeView.NET® 1.0 is Intersoft’s latest ASP.NET server control which enables you to

easily create a hierarchical data presentation. This powerful control incorporates

numerous unique features which makes WebTreeView.NET® 1.0 flexible and highly

customizable to meet your design needs.

WebTreeView.NET® 1.0 is loaded with many features which make it the best tree view

control in the industry. These features are as followed:

 Rock-solid client side architecture enables high-performance OOP-based

TreeView control.

 Supports databinding to Hierarchical DataSourceControl (such as XmlDataSource

and SiteMapDataSource) in both design and runtime.

 The unique Tristate checkbox and of course support the two-state checkbox

 The ability to load the child nodes on demand. This technique, called Load on

Demand will give you performance boost while working with large hierarchical

data presentation.

 The ability to drag and drop a node to a root node, child node, or sibling node.

 Keyboard navigation provides your end users with the ability to control the node

selection by using keyboard

 Find a node based on its path.

 Built-in animation during expanding or collapsing the node.

Web-based Vista Explorer’s tree view is just a simple sample of our WebTreeView.NET

®
 1.0

This fully-featured control will benefit the developers in creating a powerful data

hierarchical presentation, window-to-window navigation and also structural navigation.

This, of course, will help the developers deliver simple, yet powerful tree view control to

the customer.

Concepts

TriState CheckBox and Normal CheckBox

WebTreeView.NET® 1.0 introduces you innovative TriState checkbox which allows you to

have a better control over the state of checkbox in hierarchical presentation. These three

states are: checked, indeterminate, and unchecked.

WebTreeView.NET
®

 1.0 Tristate Checkbox

When to use Tristate checkbox? As an ASP.NET developer, you should have installed

Microsoft Visual Studio before and familiar with the setup wizard in Microsoft Visual

Studio 2005. In the option page, users are given an option to choose which components

they want to install by checking the check box. Notice when you check the root check

box, all the child check boxes will be checked. If you check some child check boxes, the

root check box will be checked

This Tristate checkbox concept is adopted by WebTreeView.NET® 1.0, implementing the

exact behavior of the three-state checkbox concept of Windows-based tree view.

There is no code needed to take advantage of the Tristate checkbox feature, you only

need to set the EnableTriStateCheckbox property to True. Another related property is

the AutoCheckChildNodes. Set it to True and it will automatically check all child nodes

when the parent node is checked.

Besides the advanced TriState checkbox, WebTreeView is also equipped with traditional

checkbox, the two-state checkbox (checked or unchecked). Set the ShowCheckBoxes

property to All and you will see a checkbox in every nodes.

The value of ShowCheckBoxes property

Please note that the AutoCheckBox property also applies to normal checkbox, two

state-state checkbox (checked and unchecked).

Microsoft Visual Studio Setup Wizard Replica by WebTreeView.NET
®

 1.0

How-to: Create a simple WebTreeView with Tristate CheckBox

Please follow these steps to create a simple WebTreeView with Tristate checkbox

1. Drag a WebTreeView control to the designer and resize it to your desired size.

2. Set the EnableTriStateCheckBox to True and AlutoCheckChildNodes to True.

3. Drag an XMLDataSource control to your designer and bind it an XML file. (we use

Products.xml for all tutorials in this WhitePaper)

4. Set the DataSourceID property to the XMLDataSource controlId, in this case the

ID is XMLDataSource1

5. Right click on the WebTreeView.NET control and select “Edit TreeNode

DataBindings”.

6. The WebTreeView DataBindings Editor will appear and check the Auto-

generate data binding.

WebTreeView’s DataBindings Editor Window

7. Please select the Root node in the top left box and click add.

8. Select the Root node in the bottom left box and you will see the list of the

properties. Set the TextField property to name (not shown in the screenshot

below) under the Databindings. Then, set the ShowCheckBox property (under

Default Properties) to Yes. Please refer to the screenshot below.

Select the Root Node in the bottom left box and set the ShowCheckBox property to Yes and also set the

TextField property to name

9. Please expand the Root node and select the Group node and click add.

10. Select the Group node in the bottom left box and set the TextField to name and

ShowCheckBox to Yes.

Select the Group Node in the bottom left box and set the ShowCheckBox property to Yes and also set

the TextField property to name

11. Click ok and run your sample.

Simple WebTreeView.NET with TriState CheckBox

Load on Demand

One important aspect when building a Web-based application using ASP.NET control is

that the user interaction should be performed in real time. Real time here means that

the information should be available when needed without having to wait for a minute.

This will be an issue if a control contains lots of data. This is where the Load on Demand

plays important part in WebTreeView.NET. This technique will deliver the content faster

with the build-in AJAX capability.

Can you imagine loading one hundred nodes and each node consists of another one

hundred child nodes. This will, of course, decrease the performance significantly when

the large nodes are delivered at once in first page load. This is the time when the Load

on Demand plays important role. It will boost the performance by rendering the parent

node first and when you expand a node, it will then render the child node.

With the advanced Load on Demand capability, you can now deliver high performance

hierarchical tree view presentation with large data without any performance loss.

The Load on Demand technique comes in handy when you have complex data

presentation structure. The concept behind this technique is rendering the child node

when needed, which is when the node is expanded. This process will definitely decrease

the WebTreeView.NET’s workload, thus delivering faster response and better user

interaction.

You only need to set the EnableLoadOnDemand property to True and you are all set.

It’s just that simple.

Advanced Load on Demand

The concept behind the advanced Load on Demand is that all physical child nodes are

initialized in InitializeChildNodes event. This will give you more control on how the child

nodes are initialized.

The following code demonstrates you on how to initialize a child node in

InitializeChildNodes event

protected void WebTreeView2_InitializeChildNodes(object sender,

ISNet.WebUI.WebTreeView.WebTreeViewNodeEventArgs e)

{

 ISNet.WebUI.WebTreeView.WebTreeViewNode a = new ISNet.WebUI.WebTreeView.WebTreeViewNode();

 a.Name = "NewNode" + WebTreeView2.NodeIndex.ToString();

 a.Text = "New Node " + WebTreeView2.NodeIndex.ToString();

 e.Node.Nodes.Add(a);

 ISNet.WebUI.WebTreeView.WebTreeViewNode b = new ISNet.WebUI.WebTreeView.WebTreeViewNode();

 b.Name = "NewNode" + WebTreeView2.NodeIndex.ToString();

 b.Text = "New Node " + WebTreeView2.NodeIndex.ToString();

 e.Node.Nodes.Add(b);

}

Keyboard Navigation

WebTreeView.NET® 1.0 supports both mouse navigation and keyboard navigation which

will enhance your end-user’s interactivity when using WebTreeView.NET.

WebTreeView.NET® 1.0 supports basic desktop-based keyboard navigation such as:

 Cut operation can be executed by pressing the combination of CTRL + X.

 Copy operation can be executed by pressing the combination of CTRL + C.

 Paste operation can be executed by pressing the combination of CTRL + V.

 You can also use the arrow navigation (left, right, up, down, home, delete) to

navigate our WebTreeView.NET® 1.0.

 Press F2 to perform inline-node editing.

 CTRL + Z to undo any inline-node editing.

WebTreeView.NET® 1.0 is also equipped with multiple node selection using the

CTRL+SHIFT key. You only need to set the AllowMultipleSelect to True.

Path

Path in WebTreeView.NET® 1.0 can be defined as a line which connects a node from the

root node to the node itself. WebTreeView.NET has three built-in powerful feature

related to path such as listed in the following:

 Find node by path

WebTreeView.NET has a built-in FindNodeByPath() method which allows you to

find a node by the given path. This means that you can perform any action you

desired to the node just by providing the path of a node.

function Button1_onclick()

{

 var tv = ISGetObject("WebTreeView1");

 var value = document.getElementById("txtPath").value;

 var node = tv.FindNodeByPath(value);

 var divStatus = document.getElementById("divWebTreeView1Node");

 divStatus.innerHTML = "";

 if (node!=null)

 {

 node.Select();

 divStatus.innerHTML = "Node name :" + node.Name;

 }

 else

 {

 divStatus.innerHTML = "node is not found";

 }

}

This is a sample of node finding based on its path

When executed, the code above will select a node based on the path typed in the

textbox. Please refer to our WebTreeView.NET® 1.0 Sample.

The following sample scenario can be done easily by using our

WebTreeView.NET. Please refer to the java script below on how to get the

selected node’s path.

function doWebTreeView1NodeSelect(ctrlId, node)

{

 var divStatus = document.getElementById("divWebTreeViewNodeDepth");

 document.getElementById("tdNode").innerHTML = node.Name;

 document.getElementById("tdPath").innerHTML = node.Get("Path");

}

 Identify a node as a unique node

Path is unique. Every node has its own unique path. This is what differ a node

from the others. There is certain scenario that two nodes have the same name.

This is possible if both nodes are on the different level or when two nodes are

located in two different parents. Path is an important feature when it comes to

this kind of scenario.

The sample below clearly demonstrating this feature. There are two “My Folder”

nodes, but both have different path.

A tree view which have two grandchild nodes, but different path

 Show the hierarchy of a node

A tree view is a collection of nodes which present a hierarchical data

presentation. This node can have items or child nodes and the child nodes can

also have child nodes. This is what we call the hierarchy of a node. A node always

has a parent node. If it’s a single level node, then the single node is the parent

node.

WebTreeView.NET incorporates powerful built-in API which can be used to get

the hierarchy of a node. This can be achieved by using GetParentNode(). Please

refer to the sample below.

function doWebTreeView1NodeSelect(ctrlId, node)

{

 var parentNode = node.GetParentNode();

 var parentNodeName = "";

 document.getElementById("tdNode").innerHTML = node.Name;

 if(parentNode!=null)

 {

 parentNodeName = parentNode.Name;

 }

 else

 {

 parentNodeName = "-";

 }

 document.getElementById("tdParent").innerHTML = (parentNodeName);

}

This is a sample of showing the hierarchy of a node

When you select a node, it will show you the node information and its parent

node name.

Automatically select a node on expand or collapse

WebTreeView.NET allows you to automatically select a node on expand or collapse. You

only need to set AutoSelectNodeOnExpandCollapse to True. Please refer to the

following code.

<ISWebTreeView:WebTreeView ID="WebTreeView1" runat="server"

AutoCheckChildNodes="True" AutoGenerateDataBindings="True"

DataSourceID="XmlDataSource1" Height="300px" Width="300px"

AutoSelectOnNodeExpandCollapse="True">

<FrameStyle BorderStyle="Solid" BorderWidth="1px" BorderColor="Gray">

</FrameStyle>

<DataBindings>

 <ISWebTreeView:WebTreeViewNodeBinding DataMember="Root" TextField="name"/>

 <ISWebTreeView:WebTreeViewNodeBinding DataMember="Group" TextField="name"/>

</DataBindings>

<NodeStyle>

 <Active ForeColor="White" BaseStyle="Normal" BackColor="Navy">

 </Active>

 <Over BaseStyle="Normal" Font-Underline="True">

 </Over>

 <Normal Font-Size="9pt" Font-Names="Segoe UI" Overflow="Hidden"

Cursor="Default" OverflowX="Hidden" OverflowY="Hidden">

 <Padding Left="1px" Right="3px">

 </Padding>

 </Normal>

</NodeStyle>

</ISWebTreeView:WebTreeView>

<asp:XmlDataSource ID="XmlDataSource1" runat="server"

DataFile="~/Products.xml">

 </asp:XmlDataSource>

If you expand or collapse a node, the node will be selected automatically

Animation during expanding or collapsing a node

This eye candy feature embedded in our WebTreeView.NET® 1.0 will feast your

customer’s eyes for animated and interactive user interface when expand or collapse a

node. If you set the EnableAnimation property to True, you will be able to enjoy the

sliding animation during expanding or collapsing. This proves that our

WebTreeView.NET® 1.0 is made to fulfill your customer’s need.

WebTreeView’s properties window

To enable the collapse and expand animation, open the properties window, expand the

NodeSettings and set the EnableAnimation to True.

Customizing styles, appearance, and images

Besides incorporating numerous features, WebTreeView is also highly customizable in

terms of style, appearance, and images of the node and frame.

Tree view navigation in Web-based Vista Explorer replica made by our WebTreeView.NET

You can easily customize WebTreeView to any style and appearance. The Web-based

Vista Explorer replica is a perfect sample describing this scenario. Please take a look at

the code below.

Above is the Web-based Vista Explorer client-side code.

Notice the above example and you’ll see that these following properties are set:

BorderColor Set the color of the WebTreeView’s

border

BorderStyle Set the border’s style of the

WebTreeView

BorderWidth Set the border’s width of the

WebTreeView

BackgroundImage Set each node’s background image

Font-Names Set the font style to be applied to

WebTreeView. This can be set under the

Font property

Font-Size Set the size of the font to be applied to

WebTreeView. This can also be set

under the Font property

Padding left Determines the amounts of space on

the left of WebTreeView

Padding right Determines the amounts of space on

the right of WebTreeView

Font-Underline Set underline style to each node in

WebTreeView

Overflow Show or hide the WebTreeView’s

scrollbar

Overflow-X Show or hide the WebTreeView’s

horizontal scrollbar

Overflow-Y Show or hide the WebTreeView’s vertical

scrollbar

 Frames Appearance

Frame appearance is an ASP.NET inherited style. This enables you to customize

the basic appearance of WebTreeView. You can easily set the background color,

font and its color, border color, width, and style.

 Appearance

Appearance is WebTreeView’s own style. It provides you numerous properties to

set which will help you create and customize your WebTreeView easily. Under the

appearance property, you can set the Frame Style, Node Style (Active state,

Normal state, and Over state), the loading image and the text. Please see our

documentation for the complete list.

 Images

Another style you can customize is the images. The images can be set in the

ImageSettings property.

CheckBoxFalseImage Gets or sets the images used to render false

checkbox

CheckBoxPartialImage Gets or sets the image used to render partial

checkbox

CheckBoxTrueImage

Gets or sets the images used to render false

checkbox

CollapseImage Gets or sets the image used to render node

when node is collapsed

ExpandedParentNodeImage Gets or sets the image used to render expanded

parent level node

ExpandedRootNodeImage Gets or sets the image used to render expanded

root level node

ExpandedSelectedParentNode Gets or sets the image used to render expanded

parent level node when node is selected

ExpandedSelectedRootNode Gets or sets the image used to render expanded

root level node when node is selected

ExpandImage Gets or sets the image used to render node

when node is expanded

LeafNodeImage

Gets or sets the image used to render leaf level

node

ParentNodeImage Gets or sets the image used to render parent

level node

RootNodeImage Gets or sets the image used to render root level

node

SelectedLeafNodeImage Gets or sets the image used to render selected

leaf level node

SelectedParentNodeImage

Gets or sets the image used to render selected

parent level node

SelectedRootNodeImage Gets or sets the image used to render selected

root level node

Node Editing

WebTreeView.NET also comes with the node editing ability. Node editing means that

you can add a node, delete a node, and edit a node. These three client-side actions

provide you full control over a node. In order to take advantage of this feature, you

need to set AllowAddNode, AllowDeleteNode, AllowNodeEditing to Yes.

 function Button1_onclick()

 {

 var name = document.getElementById("txtNode");

 var text = document.getElementById("txtText");

 if (name.value==null || name.value=="")

 {

 alert("node name cannot be empty");

 name.focus();

 }

 else

 {

 var tv = ISGetObject("WebTreeView1");

 var selectedNode = tv.GetSelectedNode();

 if (selectedNode==null)

 tv.AddNode(name.value);

 else

 selectedNode.AddNode(name.value);

 name.value = "node" + (tv.NodeIndex + 1);

 }

 }

The above code is a sample on how to implement AllowAddNode feature easily. The

AddNode(nodeObject) method will add a new node which is passed as a parameters

to your WebTreeView when called. If the method is called from WebTreeView object, the

node will be created as a root node, but if the method is called from an existing

WebTreeViewNode, the new node will be treated as a child node.

The DeleteNode(nodeObject) method will delete a node when called.

 var tv = ISGetObject("WebTreeView1")
tv.DeleteNode(node1); //node1 is a node object

The DeleteNode() method works for all node level, root node, child, grand child node. If

you delete a parent node, the parent’s child node will also be deleted. This is the default

behavior.

If you set the AllowNodeEditing to Yes, your end-users will be able to edit the node’s

name by using your keyboard and mouse.

Using NavigateURL and Target

NavigateURL is a property which will allow you to set the URL when a node is clicked,

while the TargetWindow property allows you to set in which window the URL will be

displayed. You can direct it to an iFrame or even a new window.

The screenshot below demonstrates the NavigateURL and Target property

A sample of WebTreeView utilizing NavigateURL and Target property

This is the ASPX code for the above sample. This is a data bound WebTreeView. You can

see that NavigateURLField value and TargetField value are taken from the XML file.

<table width="100%">

 <tr>

 <td width="250px">

 <ISWebTreeView:WebTreeView ID="WebTreeView1" runat="server"

Height="280px" Width="250px" AutoGenerateDataBindings="True"

DataSourceID="XmlDataSource1">

 <DataBindings>

 <ISWebTreeView:WebTreeViewNodeBinding DataMember="Root"

TextField="name" />

 <ISWebTreeView:WebTreeViewNodeBinding DataMember="Group"

NavigateURLField="NavigationURL" TextField="name" TargetField="Target" />

 </DataBindings>

 </ISWebTreeView:WebTreeView>

 <asp:XmlDataSource ID="XmlDataSource1" runat="server"

DataFile="~/Sample.xml"></asp:XmlDataSource>

 </td>

 <td valign="top">

 <iframe name="iFrame" id="iFrame" src="about:blank" style="width:

100%; height: 280px;"></iframe>

 </td>

 </tr>

</table>

Data Binding

WebTreeView.NET® 1.0 is equipped with data binding capability. You can bind to

XMLDataSource and SiteMapDataSource.. This basic feature will help you create a

powerful Treeview presentation in the matter of seconds.

Following is the tutorial on how to bind WebTreeView.NET® 1.0 to XMLDataSource.

1. You need to create an XMLDataSource. Please set the DataSourceID to the

XMLDataSource you’ve created before.

Bound a WebTreeView.NET
®

 1.0 to XMLDataSource

2. Then, click on the DataBindings property and the WebTreeView DataBindings

Editor will appear.

WebTreeView.NET
®

 1.0 DataBindings Editor

3. To bind the whole xml, just check the Auto-generate data binding and click ok.

The whole XML structure will be bind to the WebTreeView.NET® 1.0.

Advanced Data Binding

Besides the simple, easy binding, WebTreeView.NET® 1.0 is also equipped with a lot of

properties you can set. This can be accessible if you add a node to the Selected data

bindings box and select it. Please see the screenshot below.

WebTreeView.NET
®

 1.0 DataBindings Editor

Following is the list of available properties you can set.

Data

DataMember Gets or sets the Data Member

Depth Gets or sets the Depth of the databindings

Databindings

AllowEditingField Set a node edit ability based on the XML

CheckedField Initially check or uncheck node when

ShowCheckBox property is set to true

CheckedStateField Initially set the checked state of a node

when ShowCheckBox property is set to

true

EnabledField Enable or disable node based on the XML

ExpandedField Expand or collapse node based on the

XML

ExpandedImageField Set the expanded node image icon based

on the XML

ImageField Set the collapsed node image icon based

on the XML

ImageToolTipField Set the tooltip image icon based on the

XML

MaxBindingDepthField Set the node level you want to bind based

on the XML

NavigateURLField Set the URL when a node is selected

based on the XML

SelectableField Specifies if a node is selected or not based

on the XML

SelectedExpandedImageField Set the expand icon image of the selected

node based on the XML

SelectedField Specifies if a node is selected or not based

on the XML

SelectedImageField Set the collapse icon image of the

selected node based on the XML

ShowCheckBoxField Show or hide check box based on the XML

TagField Gets or sets a string which contains data

about the WebTreeViewNode

TargetField Specify the target window when the node

is clicked based on the XML

TextField Set the text of a node that you want to

display based on the XML

ToolTipField Set the tooltip of a node based on the

XML

VisibleField Set the visibility of a node based on the

XML

Default Properties

AllowEditing Set a node edit ability

Checked Check or uncheck a node

CheckedState Set the checked state of a node

Enabled Enable or disable node

Expanded Expand or collapse node

ExpandedImage Set the image icon of expanded node

Image Set the image icon of collapsed node

ImageToolTip Set the tooltip image icon of a node

MaxBindingDepth Set the node level you want to bind

NavigateURL Set the URL when a node is selected

Selectable Set a node’s selected ability

Selected Specifies if a node is selected or not

SelectedExpandedImage Set the expand icon image of the selected

node

SelectedImage Set the collapse icon image of the

selected node

ShowCheckBox Show or hide check box

Tag Gets or sets a string which contains data

about the WebTreeViewNode

Target Set the target window when a node is

clicked

Text Set the text of a node

ToolTip Set the tooltip of a node

Value Set the value of a node

Visible Set the visibility of a node

Notice that both Databindings properties and Default properties are identical. The

difference between them is, you can set each property value under the Databindings

based on the value specified on your XML. This approach is designed to provide you

with a hassle-free data binding process. You only need to set the structure of your

Treeview and its properties in your XML file.

A sample of XML file which can be bound to WebTreeView.NET
®

 1.0

The Depth property allows you to controls which node level you want the properties to

be applied. One thing you should note is that this only applicable to the same XML

name. The default value for this property is -1 which means all properties will be applied

to the same XML name. If you set the value to 0 (the index of a node), the properties will

only be applied to all index 0 nodes.

There are some scenarios when you have two different node levels, but both nodes have

the same DataMember and you need to set the different properties for each node level.

This is the case when you need to change the Depth’s value based on the node’s index

that you want to set to. Have a look at the image below and you will see that there are

two different node levels, but same DataMember.

Products.xml

If you leave Depth to its default value, the Selectable properties will be applied to all

nodes. You need to set the Depth to 1, if you want to apply the Selectable to

“WebCombo.NET” node only. Set it to 2 if you want to apply the Selectable to

“WebCombo.NET 2.0” node, “WebCombo.NET 3.0” node, and “WebCombo.NET 4.0”

node.

MaxBindingDepth is a property which allows you to select how many child nodes you

want to bind. This feature will be a great help when you have deep-structured XML and

for example, you want to bind a parent node and the first level child node.

WebTreeView provides you MaxBindingDepth property to achieve your scenario.

You only need to add a node to the Selected databindings box and set the

MaxBindingDepth value to the desired child node level. Please note that the value of

the MaxBindingDepth property is based on how many child node level you want to

bind, so this is a relative value, not absolute value. For example, you have a deep-

structured XML and you want to bind a parent node and level three child nodes only.

Notice that the grayed part will be the child nodes of Parent 2 node

Select the Parent node and add it to the Selected data bindigs box.

Set the MaxBindingDepth to 3

Run your project and it will look like the following screenshot

A sample utilizing MaxBindingDepth property

How-to: Use Advanced WebTreeView.NET® 1.0 DataBinding

1. Create a WebTreeView.NET® 1.0 instance in your design window.

2. Drag an XMLDataSource and bind it to an XML file, we use Products.xml

Products.xml structure, the XML used in this tutorial

3. Click on DataBindings property

4. Select the Root and click Add. The Root node will be added to Selected

DataBindings

5. Next, set the SelectableField and TextField as seen on the image below.

WebTreeView.NET
®

 1.0 DataBindings Editor

Set SelectableField and TextField value

Client-side Events

WebTreeView.NET is a highly customizable ASP.NET Treeview control as one of its

objective. The following list describes all client-side events in order:

 OnInitialized

When the WebTreeView is initialized, this event will be invoked. The parameter

for this event is controlId.

 OnNodeCheckedChanged

This event will be invoked when you check or uncheck a node. The parameters for

this event are controlId and node.

 OnNodeCollapse

This event will be invoked when a node is collapsed. The parameters for this

event are controlId and node.

 OnNodeCopy

This event will be invoked when a node is copied. The parameters for this event

are controlId and node.

 OnNodeExpand

This event will be invoked when a node is expanded. The parameters for this

event are controlId and node.

 OnNodeMove

This event will be invoked when a node is moved. The parameters for this event

are controlId and node.

 OnNodeRename

This event will be invoked when a node is renamed. The parameters for this event

are controlId, node, oldName, and newName.

 OnNodeSelect

This event will be invoked when a node is selected. The parameters for this event

are controlId and node.

 OnUnload

This event will be invoked when WebTreeView is unloaded. The parameters for

this event are controlId.

