
P a g e | 1

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

WebGrid Enterprise 7

This white paper explains the new features, enhancements, and breaking changes introduced in

WebGrid Enterprise 7.

Contents
Overview ... 4

Data editing with new Batch Update mode.. 5

Introducing SmartBatchUpdate™ ... 5

Pending Changes Concept ... 6

Rich User Interfaces ... 8

Streamlined Editing Process... 10

Built-in Changes Management ... 12

Hierarchical Tables Support ... 14

Automatic Changes Preservation ... 16

Updating to Physical Database ... 16

Understanding Batch Update Processes ... 17

Various Datasource Support .. 20

New Identity Insert .. 22

Localization ... 26

Compatibility with Other Features ... 28

Client-side Programmability... 29

New classes ... 29

New methods .. 30

New client side events ... 31

Server-side Programmability.. 32

Client-side data binding ... 36

Overview ... 36

What is client-side binding? ... 36

Innovative VirtualRendering™ .. 37

Benefits ... 38

P a g e | 2

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

Performance Benchmark and Comparison ... 39

Supported Features and Limitations... 41

The Differences with Server-side Binding ... 44

Elegant Client Binding Architecture.. 47

Client Data Object Framework ... 47

Rich Client-side Data Processing... 49

Data Loading Mode.. 51

Transaction Operations (Insert, Update and Delete) .. 53

Batch Update Support.. 55

Service Events .. 56

Client Data Source and Data Service .. 57

Server-side data source.. 57

Web Service ... 58

Windows Communication Foundation (WCF) Service ... 58

ADO.NET Data Service (Astoria) ... 59

Client-side data source .. 59

Client Binding Consideration and Best Practices... 60

Considerations ... 60

Best practice #1 – Using ServerDataSource with Paging enabled .. 60

Best practice #2 – Using WebService with PagedData loading mode .. 60

Best practice #3 – Using AdoDataService ... 60

Limitations ... 60

Client Binding Configuration with Component Designer ... 61

Client Binding API .. 62

New methods .. 62

New client side events ... 63

Other Enhancements ... 64

Improved user interface .. 64

New client side events for inline editing .. 65

Enhanced integration with WebCombo ... 65

Default Style Merging .. 66

Without Default Style Merging... 66

P a g e | 3

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

With Default Style Merging .. 66

P a g e | 4

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

Overview
WebGrid Enterprise™ 7 is the next-generation data visualization component for ASP.NET that

revolutionizes data editing experience and improves reliability by addressing performance bottlenecks

with a sophisticated client binding implementation.

WebGrid Enterprise™ 7 is strongly focused on enterprise data application that takes advantage of new

Web technologies such as “cloud” data service and offline-capable editing. This new version includes re-

engineered architecture to fully support client data operation, which is the key answer to client-side

binding while preserving the compatibilities with existing advanced features.

Intersoft’s ClientBinding™ is the technology behind WebGrid’s client binding implementation, which

reduces data footprint by over 90 percent and improves overall response time by 10 times. See the

performance benchmark for more information. In addition, client binding also introduces numerous

benefits. Learn more about client binding and its benefits.

One of the key features of ClientBinding™ is its high-level encapsulation that enables you to easily

leverage existing investments of your data service infrastructure. ClientBinding™ enables you to connect

to data service in an elegant way, without requiring you to write Javascript codes. See Elegant Client

Binding Concept to learn how you can quickly getting started with client binding.

Use Component Designer which has been redesigned to help you easily configure client binding settings

in WebGrid. With so many features provided by ClientBinding™ such as data source type, loading mode,

transaction support and more, please refer to client binding best practices to help you find the best

configuration for your client binding implementation.

WebGrid Enterprise™ 7 also features SmartBatchUpdate™, a new major innovation that takes editing

experience to a new level. This new technology enables your end user to make multiple changes to the

data in the client side, while at the same time maintaining the changes as they navigate the data around.

Embracing elegant pending changes architecture, WebGrid submits all changes to server-side in a single

request – making data update fast and efficient. Please see SmartBatchUpdate™ overview to learn the

fundamental concept of this new feature.

WebGrid 7’s batch update also supports advanced data transaction operations such as cascading inserts,

hierarchical tables, automatic object updates, identity insert handling and more. The user interface has

also been improved to provide users with intuitive way to review and manage the changes. Learn more

about user interface improvements such as call out notification, changes status and more.

The new technologies in WebGrid 7 are also designed to work in concert with each other, making it the

most advanced data visualization and management component for dynamic, Web 2.0-enabled

application.

Learn how to combine client binding and batch update along with inline editing to deliver powerful,

“cloud”-ready and offline-capable Web application.

P a g e | 5

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

Data editing with new Batch Update mode

Introducing SmartBatchUpdate™

SmartBatchUpdate™ is a new feature in WebGrid Enterprise 7 which enables you to perform multiple

edits across multiple tables in real-time without postback/callback. All pending changes will be

submitted into server at once with a single AJAX callback, thus eliminates waiting time and improves

data editing experience in overall.

When WebGrid is operating in batch update editing mode, you can make multiple edits – such as adding

new row, editing row, and deleting row – in real-time without server contact. You can also make

multiple edits across hierarchical child tables which are linked through valid referential integrity in the

same consistent fashion.

SmartBatchUpdate™ also supports more advanced scenarios such as cascading inserts and deletes on

hierarchical tables. This allows you to conveniently add new master record and its child records in a row

– making data entry across hierarchical tables a snap. Furthermore, WebGrid stores the relation

between each new record and intelligently perform new identity translation and mapping it to related

child records during physical database updates – freeing developers from tedious and lengthy codes.

SmartBatchUpdate™ provides numerous benefits for developers and end users, such as:

 Improves data editing experience.

Unlike traditional data editing, WebGrid doesn’t trigger page postback/callback when a row edit

occurred. By eliminating the wait time for each row edits, end users can perform data editing

faster and more efficient than ever.

 Reduces server workload.

SmartBatchUpdate™ saves the changes of each modified row entirely in client-side which allows

WebGrid to efficiently manage all pending changes without have to go back-and-forth to server.

When end-users are ready to commit changes, WebGrid will send a single AJAX callback to

submit all changes to be processed at the server. That translates to more efficient resource

utilization and minimized server workload.

 Prevents data entry errors.

SmartBatchUpdate™ includes powerful runtime features to help you make correct changes on

data and prevent erroneous changes which you want to avoid at all costs. The Undo Changes

feature lets end-users to undo a row changes before it is sent to server for processing. The

Review Changes feature enables end-users to review all pending changes in an intuitive dialog

box interface, where end-users can make correction on specific changes across multiple tables,

or undo the changes.

P a g e | 6

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

Pending Changes Concept

SmartBatchUpdate™ employs pending changes concept to provide solid functionality and architecture

for its batch update features. With the concept, every row that has changed since its first load will result

in a pending change.

A record row can contain only one pending change at a time, which is one of four modes below:

 Unmodified. When a change is undo’ed, the record will be set back to Unmodified.

 Added. Newly added row will be marked as Added pending change.

 Modified. Edited row will be marked as Modified pending change.

 Deleted. Deleted row will be marked as Deleted pending change.

Each row’s pending change is stored based on its corresponding table. This means that each table

contains one or more pending changes which are associated with each logical row. As a result,

SmartBatchUpdate™ provides solid and consistent object models and interfaces which enable pending

changes to be consumed in multiple tables (hierarchical) configuration. For more information about

batch update support for Hierarchical feature, please read Hierarchical Tables Support

The following illustration describes the pending changes concept in a hierarchical Grid.

Customers table (root)

•Modified Pending
Change on 'ANATR'
record.

Orders table

•Modified Pending
Change on '10507'
record.

Order Details table

•Modified Pending
Change on '10507,
57' record.

•Deleted Pending
Change on '10507,
75' record.

P a g e | 7

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

Pending changes are stored locally on client-side and can be accessed programmatically through client-

side API.

Furthermore, pending changes are automatically restored and synchronized with the current view

whenever the Grid performed a FlyPostBack action – such as sorting, filtering, grouping, etc – or page

full postback. This provides users with greater experience to interacting with information while

maintaining current changes simultaneously.

SmartBatchUpdate™ also includes built-in pending changes management, such as ability to undo

changes, accept changes, as well as review changes. For more information about pending changes

management, please see Built-in Changes Management.

It’s important to note that WebGrid requires your tables to have at least one unique key field, which is

assigned to DataKeyField property of each WebGridTable instance. Multiple key fields’ scenario is also

supported.

When Accept Changes command is invoked by users, WebGrid submits all pending changes to server in

a single FlyPostBack (AJAX) callback. Upon receiving batch update request, WebGrid will automatically

apply all pending changes to the data source in batch. Depending on your data source type, WebGrid

will decide whether it should automatically apply the changes to physical database. To learn more about

physical database updates, please visit Updating to Physical Database.

With solid and extensible pending changes architecture provided by SmartBatchUpdate™, WebGrid

Enterprise 7 delivers reliable client-side editing solution for your Web application, where data lost is not

an option.

P a g e | 8

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

Rich User Interfaces

In addition to solid editing architecture and powerful runtime features, SmartBatchUpdate™ also

provides your end-users with rich visual elements to easily determine added, modified and deleted

rows.

The following image shows a WebGrid in hierarchical tables with several pending changes.

Figure 1. WebGrid provides rich visual hints and indicators for pending changes.

SmartBatchUpdate™ includes additional visual elements and indicators, such as explained below:

 Changes indicator in row header.

The visual indicator in row header allows users to quickly

distinguish the changes status of each row. Added row is

marked with icon; modified row is marked with icon; while

deleted row is marked with icon.

 Visual row style.

Different row change status will have different row style to let users recognize the status of each

change instantly. By default, added rows are marked with light yellow, modified rows with light

green, and deleted rows with light red. These visual styles can be customized through

AddedRowStyle, ModifiedRowStyle and DeletedRowStyle respectively.

P a g e | 9

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

 Pending changes status and related commands in status bar.

 Whenever users make changes to data, add or remove a row, WebGrid will automatically

maintain the pending changes status by updating the related user interface elements in the

status bar area. The pending changes status makes it easy for users to understand the current

changes state, as well as to

perform an action that

related to the current

changes such as accepting all

changes.

 Integration with context menu.

SmartBatchUpdates™ naturally integrates into existing

context menu interface. WebGrid will display various

pending changes related command depending on the row

state and the settings provided in BatchUpdateSettings

object.

 Callout notification on lost focus.

Users tend to forget to save changes when they

are doing multiple tasks at the same time. With

the eye-catching Vista-style notification in

WebGrid 7, that is nothing to worry about.

The Vista-style notification will appear

automatically when WebGrid lose its focus and

pending changes existed.

 Prompt on page navigation

Better yet – users will be prompted

when they are about to leave the page

while pending changes existed. This

feature is especially useful to avoid

changes lost due to accidental

hyperlink clicks or browser close.

P a g e | 10

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

Streamlined Editing Process

SmartBatchUpdate™ incorporates streamlined editing behaviors to make it even easier, faster and more

convenient for users to work with data.

When the batch update feature is enabled, the following behaviors will be automatically enabled:

 Pending changes merging.

A record can contain only one mode of changes. Therefore, if you perform several changes on

the same mode, the pending changes will merge automatically. If the change mode is different,

it will remove the previous changes and set the latest change mode as active.

For instances, consider the following scenarios:

- User edited ContactName on record A. Next, CustomerName and Country are changed. The

latter changes will be merged with first changes, resulting in single pending change that

contains three fields edit.

- User edited a record then later deletes it. In such case, the previous changes will be undo’ed

and the delete pending change is added.

- User added a record then later edits more fields. The record will remain marked as added

pending change, while the latter edits will be merged.

- User added a record the later deletes it. In such case, the record will be physically deleted

from client view. Its pending change will be removed as well.

 Go to next row on last cell.

When you pressed TAB key to edit data and past the last cell of the row, the edited row will be

marked as pending changes. The active cell selection will also be set to the next row, which

allows users to edit data faster.

 Unique auto-increment fields will be set to (Auto).

 WebGrid will automatically set auto-increment

column – which is usually used as DataKeyField – as

read-only to avoid unnecessary data update error.

Furthermore, the auto-increment field will use a

user-friendly text such as “(Auto)” which tells the

users that the value of the cell is automatically

generated.

 Automatically generate key values for auto-increment fields.

WebGrid includes ability to generate key values for auto-increment fields to simulate the

database structure in the client side, which enables the pending changes concept to work

effectively and reliably.

P a g e | 11

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

 Select first cell after adding new row.

WebGrid provides a new setting to focus the

selection to first editable cell upon successful row

adding operation, which significantly improves

data entry process. This setting can be turned on

by setting SelectFirstCellOnAdd to true in the

LayoutSettings object.

 Rows with deleted pending change can’t be edited.

When a row is marked with deleted

pending change, WebGrid disables the

row from further editing. This behavior is

designated to prevent conflicts and

unnecessary errors during the server-side

batch update process.

 New rows will always be added to the last position in the table.

Add pending changes in WebGrid will always be shown consistently in the last position of the

table according to the sequence of insertion. This design allows users to easily locate newly

added rows whenever they need to access

it. Furthermore, the added rows will be

displayed regardless of the view settings

such as in the condition of sorted, filtered

or grouped.

 Added row will be removed from view on delete.

When delete action is performed on newly added row, WebGrid intelligently performs undo

action on the specified new row. As a result, the added row will be removed from the client

view as well as its associated pending changes.

In addition to the editing behaviors enhancement, SmartBatchUpdate™ also enhances the user

experience in overall. To learn more, please see automatic changes preservation and compatibility with

existing features.

P a g e | 12

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

Built-in Changes Management

SmartBatchUpdate™ provides a high-level built-in changes management, in addition to the solid

underlying infrastructure which maintains the integrity and consistency of pending changes and batch

update process.

Changes management in WebGrid Enterprise 7 includes the following features:

 Undo Changes.

WebGrid stores all pending changes and all its associated

row objects in client side. This design enables WebGrid

to track the changes made on each record. Therefore, it

allows users to undo a pending change completely.

You can access Undo Changes command by bringing the row’s context menu (right click on

selected row). If you would like to undo all changes that you have made, you can click on Undo

All Changes command in the row’s context menu. Alternatively, you can easily locate the

command in the status bar.

Please note that undo changes command will revert all changes back into its original state.

Thanks to the state-of-the-art pending changes architecture, the operation is done in real-time

without the needs for server postback/callback.

P a g e | 13

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

 Review Changes.

Designed with solid architecture, SmartBatchUpdate™ allows your end user to make dozens to

hundreds of pending changes in a single session.

For instance, end user is allowed to make changes from one page, navigate to other page

through paging function and make changes on the other pages, and so on. With so many

changes in different views, users often have difficulty in reviewing or locating the pending

changes.

To support these dynamic scenarios, users will need the ability to access all pending changes

that they have made in different views. Review Changes is a powerful runtime feature that

makes it easy and efficient for users to review all changes regardless of the tables and pending

changes state.

Review Changes feature sports sleek dialog box interface to provide end user with a streamlined

and convenient access to all pending changes within a single location. See below screenshot to

get a better picture.

Review Changes dialog box provides easy-access to all pending changes across tables and views – makes it easy
for users to undo several records or accept changes.

Note that the changes will be preserved even though the view has changed completely – eg,

through sorting or paging. To learn more, see Automatic Changes Preservation.

P a g e | 14

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

Hierarchical Tables Support

SmartBatchUpdate™ includes full support for hierarchical tables configuration, makes it the most

advanced and reliable solution for enterprise-class data editing requirements.

Consider a WebGrid with Customers-Order-Order Details configuration. Ideally, end user will need the

ability to perform changes in child table in the same way and manner as they do it in root table.

WebGrid Enterprise 7’s unique SmartBatchUpdate™ technology simply makes it happen. The following

image shows a hierarchical WebGrid with several changes on each table. The pending changes can be

easily recognized by its visual style and row header’s indicator.

When batch update feature is enabled in WebGrid, it will be automatically applied globally to include all

child tables.

The batch update feature is supported in hierarchical WebGrid, regardless of the datasource type. That

means no matter what your WebGrid is bound to – either it is a DataSet object, a hierarchical custom

object, or an ISDataSource object – the batch update will always work in the same way and consistent

fashion.

The batch update includes specific support for hierarchical WebGrid such as:

 Maintain relations through referential integrity.

WebGrid requires the tables to have valid referential integrity, that’s all it needs for batch

update feature to work. The referential integrity is usually defined at DataSet level through

Relationships object. WebGrid makes use of this information in hierarchical data processing as

well as in batch update processing.

P a g e | 15

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

Through referential integrity between each table, WebGrid will be able to store appropriate

changes such as edits or deletes in the child table.

 Cascading Inserts.

One of the most challenging requirements in hierarchical editing is the ability to perform

cascading inserts in batch update mode.

Cascading inserts essentially means that newly added rows in each linked table should be

submitted at the same time in a single update process. From end user point, they require the

ability to create the new row in parent table and continue to add its child rows – without having

to physically create the parent row in the server.

SmartBatchUpdate™ is designed to fully support cascading inserts, making it easier and more

efficient for end user to add new data across multiple child tables.

An example of cascading inserts in hierarchical WebGrid can be seen in the following illustration.

As illustrated in the above image, user can quickly add a new data in the Customers table, drill

down the record (even though it’s not existed in server yet), add two new records into Orders

table, drill down the Order record again, and finally add records to the Order Details table.

The cascading inserts is made possible as SmartBatchUpdate™ smartly virtualizes the referential

links and structure of each table, and intelligently generates the unique auto-generated values

in the client side. See the red-boxed hints in above illustration.

WebGrid supports auto-generated values for both auto-increment data type such as Int32 and

GUID type. WebGrid will automatically show (Auto) text for auto-increment fields.

P a g e | 16

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

When it comes to server-side processing, i.e. when user invoked Accept Changes command,

WebGrid will automatically translate the new identity with the one resulted from the database

inserts and map it recursively to the linked child rows. For more information, please see

Updating to Physical Database.

Automatic Changes Preservation

As in the good tradition of WebGrid, SmartBatchUpdate™ is rigorously designed for the best user

experiences. In simpler words, the batch update feature shouldn’t limit end user to perform common

data operations – especially the one that completely changes the current view.

For quick instances – data sorting, grouping or filtering are normally disabled when batch update feature

is used. Some common reasons are that the changes are either too difficult to be maintained, or

impossible to be preserved between view change.

SmartBatchUpdate™ takes data editing to a new height by allowing users to do what they used to do –

column sorting, filtering, grouping, and even data paging – while simultaneously maintain the existing

pending changes that they have made.

WebGrid does not only maintain the existing pending changes when you work on different views of your

data, it perfectly restores the visual styles and row state of your pending changes as in where it left off.

Automatic changes preservation, an integral feature of SmartBatchUpdate™ – enables many scenarios

not possible to achieve in the past – dramatically enhances user productivity. For instance, it is possible

to edit a record in page 1, then jump to page 3 and edit more records, then go back to page 1 and edit

more fields on existing edited record.

Automatic changes preservation works on data operations that change the view completely, such as:

 Column Sorting

 Column Filtering

 Column Grouping

 Column Visibility/Position Changing

 Refresh and RefreshAll

 Child Table Loading

 Classic Paging

 Virtual Load Paging

This feature is enabled by default when batch update feature is enabled. There are no additional steps

required by developers to activate this feature.

Updating to Physical Database

SmartBatchUpdate™ provides sophisticated implementation to automate the batch updating process to

the physical database.

P a g e | 17

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

The automatic updating feature significantly reduces development time – as you are not required to

write any codes to perform the batch update, or very minimal efforts when you need to customize the

updating process in more advanced scenarios.

To understand the physical updating concept better, please see the following illustration.

Understanding Batch Update Processes

As shown in the illustration above, the physical update has several processes such as detailed in the

following:

 Automatic object updates.

This setting is enabled by default. This feature will attempt to automatically apply the submitted

pending changes to the intermediate data source that hold the objects during the binding

process.

For instance, when WebGrid is bound to DataSet or DataTable, your pending changes will be

applied and then mapped to your data source. This enables you to simply call a line of code to

perform the physical updates via DbAdapter.

In more advanced scenario, such as when WebGrid is bound to unstructured data source or

custom object, you can disable this feature by setting the AutomaticObjectUpdates property in

BatchUpdateSettings to false.

ASP.NET

Web Form.

User accepted all pending

changes from client side.

WebGrid processed all changes

with Automatic Object Updates

feature.

All changes are

submitted to server

page. BatchUpdate server side event is

invoked. If returns true, process

with database physical updates.

All changes are submitted to

database for physical updates.

WebGrid sent back

the update results

to client side via

AJAX. Partial errors

are also included.

P a g e | 18

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

In addition to single table support, this feature is also designed to support nested hierarchical

tables that linked through Referential Integrity. This feature makes advanced scenarios possible

such as cascading inserts and other scenarios related to hierarchical tables.

Please note that WebGrid doesn’t perform physical update in this process.

 BatchUpdate server side event.

WebGrid provides a new server side event named OnBatchUpdate, which is invoked when the

pending changes are required to be submitted to physical database.

When bound to data source other than data source controls, developers can handle

OnBatchUpdate server side event to write the codes required to update the changes into

physical database.

When bound to updatable data source controls – such as AccessDataSource, ObjectDataSource,

and others – WebGrid will handle all physical updates automatically, given that ReturnValue is

true in OnBatchUpdate event. The ReturnValue is true by default, which can be set to false to

cancel automatic physical updates.

OnBatchUpdate server side event provides BatchUpdateEventArgs in the event argument, which

is useful for developers who would like to customize the physical updating process, such as in

the case of custom object binding.

The BatchUpdateEventArgs contains two properties:

o PendingChanges. Returns a List<WebGridRowChanges> object.

Access this property to get all pending changes, regardless of the row state and tables.

For more information about the object model, see Server-side Programmability

o ReturnValue. Returns a Boolean value.

When bound to updatable data source controls, such as SqlDataSource, WebGrid

automatically connects to the data source controls and invokes the update function to

process the changes. You can set this property to false to prevent WebGrid to continue

the automatic updates, such as in the case of failed validation or other business logic

constraints.

The following C# codes show how to update all changes in a flat WebGrid that bound to a

DataSet object.

void WebGrid1_BatchUpdate(object sender, BatchUpdateEventArgs e)

 {

 CustomersTableAdapter daCustomer = new CustomersTableAdapter();

 dsNorthwind ds = (dsNorthwind)WebGrid1.GetCachedDataSource();

P a g e | 19

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

 daCustomer.Update(ds); // updates all changes to database

 }

 Partial errors support.

In addition to solid batch update architecture and automatic object updates,

SmartBatchUpdate™ is also equipped with support for partial errors, making it the most

advanced and reliable solution for client-side data editing application.

Partial errors occurred when one or more changes are failed to be updated while there are also

some successful updates. Partial errors will not occur when all changes are failed.

With partial errors support, user can make changes with confidence, without have to worry that

error in one of the changes will cause all changes to fail. This means that WebGrid is able to

isolate erroneous changes, and continue to update the next changes that are unrelated to the

previously failed changes update.

At client-side, WebGrid also restores the pending changes that were not successfully updated,

so that end user can conveniently correct the errors and accept the changes.

The following image shows a WebGrid with partial errors response. The error detail for each

failed updates are shown in the message box, making it easy for end user to review and revise

the errors.

For more control over partial errors response in the client side, you can handle the

OnBatchUpdateSuccess client side event and access the rowErrorXml parameter to get the error

detail on each failed update. For more information about client side usage, please see Client-

side Programmability

P a g e | 20

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

Various Datasource Support

WebGrid Enterprise 7 supports physical database updates in various scenarios, such as when bound to

different type of datasource, hierarchical tables configuration, and more. The following list describes the

supported scenarios in more details:

 Traditional Binding (ADO.NET DataSet and DataTable)

When bound to ADO.NET-compatible data source such as DataSet and DataTable, you will need

to write codes in OnBatchUpdate server side event to update the changes to database.

However, the required codes should be very minimal as ADO.NET already implemented batch

update at data access level. Developers will then be able to simply invoking a single Update

method to process all changes, which were previously mapped during Automatic Object

Updates process.

The following C# codes show how to update all changes that bound to a DataTable object.

void WebGrid1_BatchUpdate(object sender, BatchUpdateEventArgs e)

 {

 CustomersTableAdapter daCustomer = new CustomersTableAdapter();

 DataTable dt = (DataTable)WebGrid1.GetCachedDataSource();

 daCustomer.Update(dt); // updates all changes to database

 }

 Declarative Binding (Datasource Control such as SqlDataSource)

Data source control is the most ideal data binding concept in ASP.NET that provides clear

abstraction between UI and data logic. Introduced in .NET 2.0, data source control allows you to

bind data in declarative markup, saving you from tedious tasks and lengthy codes.

SmartBatchUpdate™ takes advantage of data source control to the fullest. When you connect

WebGrid to an updatable data source control, you don’t need to write codes to handle the

physical updates.

To enable batch update in declarative binding scenario, simply set AllowBatchUpdate to true

and make sure your data source control has been configured properly to support data updates.

 Hierarchical Traditional Binding (ADO.NET DataSet)

Similar to Traditional Binding, you are also required to handle OnBatchUpdate server side event

to write codes to perform database updates.

Thanks to the automatic identity’s mapping through referential integrity, WebGrid performs all

the complex logics behind the scene, so that you only need to write a few lines of codes to

update the dataset.

P a g e | 21

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

The following C# codes show how to update all changes in each table contained in the DataSet

object.

void WebGrid1_BatchUpdate(object sender, BatchUpdateEventArgs e)

{

 CustomersTableAdapter daCustomer = new CustomersTableAdapter();

 OrdersTableAdapter daOrders = new OrdersTableAdapter();

 Order_DetailsTableAdapter daOrderDetails = new

Order_DetailsTableAdapter();

 dsNorthwind ds = (dsNorthwind)WebGrid1.GetCachedDataSource();

 // updates all changes per table adapter from the root table

 // to each child table in ordered sequence

 daCustomer.Update(ds);

 daOrders.Update(ds);

 daOrderDetails.Update(ds);

}

 Hierarchical Declarative Binding (ISDataSource)

As in flat WebGrid declarative binding, SmartBatchUpdate™ supports hierarchical WebGrid that

is bound to ISDataSource control in the same way and consistent fashion.

With ISDataSource control, you are not required to write codes in order to perform physical

update into the underlying database.

It is important to ensure that your ISDataSource instance has been properly configured to return

new identity for each table in the event of insert. For more information, please see New Identity

Insert in the section below.

 Custom Object

In addition to built-in .NET data sources, SmartBatchUpdate™ is rigorously designed to support

advanced enterprise scenarios, such as using the feature in conjunction with custom object data

binding.

When bound to custom object collection – such as a list of Customer objects – you can disable

automatic object updates feature. In this case, you are responsible to write codes to perform

physical updates according to your business logic/model.

In the same way as in other data sources, you handled OnBatchUpdate server side event to

provide codes to perform physical update.

To learn more on how to use batch update feature in custom object scenario, please see Server-

side Programmability

http://www.intersoftpt.com/ISDataSource

P a g e | 22

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

New Identity Insert

One of the best practices in database design concept is to have at least one unique, auto-increment field

in each table which acts as the row’s identifier.

When you insert a new row to the table, the database will issue a new, unique identity value of the new

inserted row. However, each database provider has different ways to retrieve the new identity’s value.

As such, Microsoft .NET Framework doesn’t include built-in implementation to retrieve identity insert in

its ADO.NET technology.

SmartBatchUpdate™ relies heavily on row’s identifier to differentiate each record in order to work

properly. Therefore, developers should make sure that the new identity’s value is correctly retrieved

and passed to WebGrid during batch update processing.

The following list describes the techniques to retrieve the new identity’s value in various data source

type:

 ADO.NET (DataSet).

ADO.NET, as the middle-tier data object provided in Microsoft .NET, does not contain database

specific implementation in its data access level. As such, the design enables it to work with any

database providers that support .NET Framework.

When a new row is inserted through DbAdapter compatible provider, it does

not return the new row’s identity by default. Thus, developers are required to write additional

codes to programmatically obtain the new row’s identity.

The following C# codes show how to retrieve the new identity for Access or Sql database

provider.

void WebGrid1_BatchUpdate(object sender, BatchUpdateEventArgs e)

 {

 CustomersTableAdapter daCustomer = new CustomersTableAdapter();

 OrdersTableAdapter daOrders = new OrdersTableAdapter();

 Order_DetailsTableAdapter daOrderDetails = new

Order_DetailsTableAdapter();

 dsNorthwind ds = (dsNorthwind)WebGrid1.GetCachedDataSource();

 // Handle RowUpdated event of DataAdapter

 daOrders.DataAdapter.RowUpdated += new

OleDbRowUpdatedEventHandler(DataAdapter_RowUpdated);

 daCustomer.Update(ds);

 daOrders.Update(ds);

 daOrderDetails.Update(ds);

}

P a g e | 23

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

void DataAdapter_RowUpdated(object sender, OleDbRowUpdatedEventArgs e)

 {

 // Conditionally execute this code block on inserts only.

 if (e.StatementType == StatementType.Insert)

 {

 if (e.Row.Table.TableName == "Orders")

 {

 OleDbCommand cmdNewID = new OleDbCommand("SELECT @@IDENTITY",

 e.Command.Connection);

 /* Retrieve the new identity and call UpdateRowIdentity to

 process the new identity. */

 WebGrid1.GetTableByName("Orders").UpdateRowIdentity("OrderID",

e.Row["OrderID"], cmdNewID.ExecuteScalar());

 }

 }

}

Codes Explanation:

1. In OnBatchUpdate server side event, you write your codes that invokes physical database

updates. In the sample above, the RowUpdated event is handled before any calls to Update

method.

2. The function delegate for RowUpdated will be invoked for each successful insert. The above

codes perform checking on StatementType and TableName respectively.

3. A new OleDbCommand object is created to perform select identity retrieval, based on

existing connection instance. It’s important that you use the existing connection instance in

order to get the new identity properly. Again, note that the select identity retrieval

statement above only works for Access and Sql-compatible provider.

4. Finally, UpdateRowIdentity method of the respective WebGridTable instance is called,

passing the identity’s data member name, the current value of the OrderID, and the new

identity’s value resulted from the successive insert.

It’s extremely important to call UpdateRowIdentity method to pass in the obtained new identity

value. The method maps the new identity into each inserted row properly, which enables

WebGrid to process the changes efficiently specifically in hierarchical configuration and more

advanced scenarios such as cascading inserts.

 Data source control.

Most data source controls that shipped with Visual Studio® 2005 or 2008 do not support

automatic identity retrieval. The only data source control that supports automatic identity

retrieval is SqlDataSource.

P a g e | 24

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

WebGrid extends the data source control further by providing automatic identity retrieval

support for AccessDataSource, in addition to SqlDataSource. This means that if you bound

WebGrid to either AccessDataSource or SqlDataSource, you don’t need to write additional codes

to retrieve the new identity.

The following C# codes show how to retrieve new identity for ObjectDataSource control. The

sample is referencing to Orders table in Northwind sample database.

[DataObjectMethodAttribute(DataObjectMethodType.Insert, true)]

public int DoInsert(ref Nullable<int> OrderID, string CustomerID,

Nullable<int> EmployeeID, Nullable<System.DateTime> OrderDate,

Nullable<System.DateTime> RequiredDate, Nullable<System.DateTime>

ShippedDate, Nullable<int> ShipVia, Nullable<decimal> Freight, string

ShipName, string ShipAddress, string ShipCity, string ShipRegion,

string ShipPostalCode, string ShipCountry)

 {

 this.Connection.Open(); // important

 int affectedRows = this.Insert(CustomerID, EmployeeID, OrderDate,

RequiredDate, ShippedDate, ShipVia, Freight,

 ShipName, ShipAddress, ShipCity, ShipRegion,

ShipPostalCode, ShipCountry);

 int? identity = this.SelectIdentityQuery();

 OrderID = identity; // pass the new identity into OrderID param

 this.Connection.Close();

 return affectedRows;

 }

 public int SelectIdentityQuery()

 {

OleDbCommand cmd = new OleDbCommand("SELECT @@IDENTITY",

this.Connection);

 int newID = (int)cmd.ExecuteScalar();

 return newID;

}

At the WebForm (ASPX) page, make sure you reflect the InsertCommand with the new extended

method name above. Furthermore, you’ll need to add a new OrderID parameter in the

InsertParameters collection. See the following sample:

<asp:ObjectDataSource ID="ObjectDataSource1" runat="server" ...

InsertMethod="DoInsert" OnInserted="ObjectDataSource1_Inserted">

<InsertParameters>

<asp:Parameter Direction="InputOutput" Name="OrderID"

Type="Object" />

...

</InsertParameters>

</asp:ObjectDataSource>

P a g e | 25

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

At the page code behind, you will need to provide the function as the delegate for OnInserted

event that is defined in the WebForm (ASPX).

The following C# codes show how to access the output parameters that obtained during

DoInsert command, and pass it to WebGrid for further processing.

protected void ObjectDataSource1_Inserted(object sender,

ObjectDataSourceStatusEventArgs e)

{

 WebGrid1.SetOutputParameters(e.OutputParameters);

}

Codes Explanation:

1. By default, the Visual Studio-generated table adapter doesn’t contain implementation to

return new identity upon successive inserts. Thus, we created a new method to extend the

table adapter’s Insert functionality.

2. A new parameter OrderID with ref keyword is inserted into the first parameter of the

extended Insert method. This parameter is used to hold the new identity value which is

assigned during the process.

3. The SelectIdentityQuery method is used to obtain the row’s new identity as the result of

successive insert. This query is compatible with Access and Sql providers.

4. The extended Insert method name is assigned to the InsertCommand of the

ObjectDataSource.

5. Handle OnInserted server side event of the ObjectDataSource to obtain the resulted output

parameters and pass it to WebGrid for further processing.

6. Finally, adds a new <asp:Parameter> object into the InsertParameter collection of the

ObjectDataSource. This new parameter is required to reflect the parameter signature of

DoInsert method, which is used to hold the new identity value of OrderID column.

 Intersoft Datasource Control (ISDataSource)

Intersoft’s flagship ISDataSource control also works the same way and manner as

ObjectDataSource, where it is serving as intermediate data class that bridge between User

Interface and backend provider. As such, ISDataSource does not contain vendor-specific

implementation in order to support various database providers supported by .NET Framework.

ISDataSource is the only provider in the market that supports multiple tables. As the result,

WebGrid accepts only ISDataSource control for its hierarchical table feature.

To retrieve new identity in ISDataSource, you can use the same technique as in

ObjectDataSource above. The only exception is that you can skip the fifth step above.

ISDataSource doesn’t require you to pass the output parameters to WebGrid, since it is tightly

integrated with ISDataSource and thus it has exclusive capability to access ISDataSource

instance through standardized interfaces.

P a g e | 26

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

Localization

The new batch update feature in WebGrid Enterprise 7 introduces a dozens of new User Interface

elements, which contains many new textual settings as well.

As in good tradition of WebGrid, all textual settings are customizable according to the culture specified

by developer. Each textual setting can also be overridden individually. You can find the complete text

settings in default.xml which is located in the Localization folder.

The following table lists the new text settings that you can customize.

Category Text Setting Key Default Text Setting Value (English)

CommonText PendingChanges {0} pending change(s).

 DeletedRowNoEdit Row marked as deleted cannot be
modified.

 DeletedRowNoExpand Row marked as deleted cannot be
expanded.

 BatchUpdateSuccess All changes have been successfully
updated to server.

 BatchUpdateSuccessWithPartialErrors One or more changes are not updated
due to server errors.

MessageBoxText UnsavedPendingChanges You have made one or more changes
on WebGrid records. Any unsaved
changes will lose.

 NotifyPendingChanges There are {0} unsaved pending changes.
Click Accept Changes button below to
save changes.

 UndoPendingChanges Are you sure you want to undo all
pending changes?

 UndoSelectedPendingChanges Are you sure you want to undo selected
pending changes?

 DeletedRowEditException You cannot make changes to the row
which parent has been marked as
deleted.

 DuplicateKeyException The pending changes already contain a
record with key '{0}'

 PrimaryKeyEditException Modification on primary key's field of
pending changes is not allowed.

 BatchUpdateException An exception has occurred while
processing batch update. Please correct
or undo your changes.\n\nException
details:\n{0}

 BatchUpdatePartialException WebGrid failed to update {0} out of {1}
changes due to errors. Please review
and correct your changes.\n\nThe
following records were not
updated:\n{2}

P a g e | 27

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

Tooltip ModifiedRowState Modified row

 AddedRowState Added row

 DeletedRowState Deleted row

 PendingChangesEmpty There are no pending changes

 PendingChangesExisted There are {0} pending changes: {1}
insert(s), {2} edit(s), {3} delete(s)

 ReviewChanges Review Pending Changes

 UndoChanges Undo All Changes

 AcceptChanges Accept All Changes

ContextMenu/Row UndoSelection Undo Selection

 DeleteSelection Delete Selection

Note: You may find empty text entries when using languages other than English. If you found empty

entries on the language and culture that you are familiar with, please help us to translate the entries

using the default.xml as the template and send it to feedback@intersoftpt.com.

mailto:feedback@intersoftpt.com

P a g e | 28

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

Compatibility with Other Features

As in every major release of WebGrid Enterprise, every new feature and enhancement are designed to

work in conjunction with existing features. There are, though, some conditions and scenarios where the

enhancements are not applicable, such as due to behavior conflicts.

In addition to comprehensive hierarchical tables and client side editing support, SmartBatchUpdate™ is

also designed to work with existing features. Some of noteworthy key features are such as listed in the

following:

 All user interaction features, such as column resizing, moving, selection and context menu.

 All databound operations, such as sorting, grouping and filtering.

 Special support for column grouping, where newly added rows will remain visible and will be

properly indented according to the group level.

 Data paging includes both classic paging and virtual load.

 Cell-select editing mode.

 Columnset layout mode.

 Column freezing.

 Auto-filter suggestion.

 Preview row.

 Self referencing.

Multiple Selection feature is also enhanced to

work in harmony with batch update feature.

When you select multiple rows that contain

pending changes, the Undo Selection command

will appear in context menu, allowing end user to

quickly undo multiple pending changes. Also,

when deletion feature is enabled and multiple rows are selected, Delete Selection will appear in the

context menu.

All client side APIs and object models continue to work and function normally as published in the

documentation.

There are no unknown compatibilities with specific features that could cause errors or misbehaviors

when batch update is enabled as far as the time of this writing.

P a g e | 29

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

Client-side Programmability

SmartBatchUpdates™ is a set of comprehensive object models and application programming interfaces

(API), serving as the main foundation and architecture for the pending changes concept introduced in

WebGrid Enterprise 7.

All pending changes operation that invoked from WebGrid’s user interface is also using the same set of

APIs and interfaces. The result is a powerful and highly extensible client side batch editing architecture,

which enables developers to further extend the functionality to address their complex business

requirements.

The following sections describe the new classes, methods and client side events that introduced as core

programming interfaces for the batch update feature.

New classes

 WebGridBatchUpdateSettings. This class contains all settings and behaviors related to batch

update feature.

Properties:

o AllowReviewChanges (bool)

o AllowUndoChanges (bool)

o AutomaticObjectUpdate (readonly, bool)

o PromptOnUndoAllChanges (bool)

o NotifyOnLostFocus (bool)

o HighlightChanges (bool)

 WebGridCellData. This class holds the delta information of modified cell data.

Properties:

o Column (WebGridColumn object)

o OldValue (object)

o OldText (string)

o NewValue (object)

o NewText (string)

 WebGridRowChanges. This class represents the changes for a row object.

Properties:

o RowState (readonly, string). Possible values: Added, Modified, Deleted.

o Element (readonly, HTMLRow object)

o Data (readonly, Array of WebGridCellData)

o Row (readonly, WebGridRow object)

P a g e | 30

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

o KeyValues (readonly, string)

o Table (readonly, WebGridTable object)

Methods:

o MergeChanges. Parameter: the row to be merged (WebGridRow object).

o GetExistingData. Parameter: the name of cell to retrieve (string).

New methods

Several methods have been added as extensions to provide batch update functionality. These methods

will only be available when batch update feature is used.

Class New Method Parameters

WebGrid
GetChangesCount (Returns the count of all pending
changes regardless of the state and table)

-

UpdatePendingChangesStatus (Synchronize pending
changes with Grid’s user interface elements)

-

UndoAllChanges (Undo all pending changes regardless
of the state and table)

-

AcceptAllChanges (Accept all pending changes and
submit them to server for batch update)

-

GetChanges (Returns a list of WebGridRowChange
objects)

rowState (Specifies the state of the changes
to get)

InvalidateChanges (Invalidate all pending changes to be
reprocessed in the next synchronization)

-

ClearChanges (Clear and remove all pending changes
regardless of the state and table)

-

WebGridTable
GetChanges (Returns a list of pending changes that
existed in this table)

rowState (Specifies the state of the changes
to get)

GetChangesCount (Returns the count of the pending
changes in this table)

-

 UndoChanges (Undo all pending changes in this table) -

InvalidateChanges (Invalidate all pending changes in this
table)

-

WebGridRow GetChanges (Returns the changes made to this row)
rowState (Specifies the state of the changes
to get)

GetRowState (Returns the state of this row. It will
returns Unmodified if this row has no changes)

-

InvalidateRowState (Invalidate the state of this row to
be processed in the next synchronization)

-

 UndoChanges (Undo changes made to this row)
skipUpdateStatus (Specifies whether to skip
the status updating after undo)

P a g e | 31

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

AddPendingChanges (Mark changes made to this row
and add it into pending changes collection)

-

UpdatePendingChangesUI (Synchronize the pending
changes data with Grid’s user interface elements)

isProgrammatic (Specifies whether the
method is called by user code)

 SetDeleted (Mark this row as deleted) -

WebGridCell SetChanges (Change the text and value of this cell)

text (The new text to be set)
value (The new value to be set. This
parameter is optional, and only useful for
valuelist column)

New client side events

The following table describes the new client side events related to batch update feature.

Event Name Description Parameters

OnUndoChanges Fired when a row changes is about to be undo'ed.
controlId, rowObject (The row to be
undo’ed)

OnUndoAllChanges
Fired when undo all changes command is
performed.

controlId

OnAcceptAllChanges
Fired when accept all changes command is
performed.

controlId

OnAddPendingChanges
Fired when a pending changes is about to be
added.

controlId, table (The table on which
pending changes is added to), rowChange
(The row change object)

OnRemovePendingChanges
Fired when a pending changes is about to be
removed.

controlId, table (The table on which
pending changes is added to), rowChange
(The row change object)

OnBatchUpdateSuccess
Fired when batch update operation has been
successfully completed.

controlId, hasPartialErrors (Whether the
batch update contains one or more
errors), partialErrorsXml (The xml
document contains partial errors data)

P a g e | 32

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

Server-side Programmability

As in client-side, the same set of new classes and methods have also been added to server-side. This

enables reliable synchronization between client-side and server-side, which results in consistent

interfaces and elegant objects design.

For shared set of the new classes, methods and properties; please refer to Client-side Programmability

section above.

The following list shows additional methods to perform server-side related tasks.

 WebGrid class.

Methods:

o GetChanges()

Returns all pending changes regardless of the row’s state and table.

o GetChanges(RowState rowState)

Returns all pending changes with given row state.

o PerformBatchUpdate(bool throwExceptionOnError)

Processes changes and updates it to physical database programmatically.

o GetBatchUpdateExceptions()

Returns one or more exceptions that occurred while processing batch update.

o AddBatchUpdateException(WebGridBatchUpdateException exception)

Adds an exception when a batch update-related error occurred. Use this method to take

advantage of partial error support in custom object updating scenario.

Events:

o OnBatchUpdate. Provided BatchUpdateEventArgs as the event argument.

This event will always be invoked when batch update feature is enabled. This event is

required to be handled for traditional and custom object binding. You can cancel

WebGrid for further processing by setting false to its ReturnValue.

 WebGridTable class.

Methods:

o GetChanges(RowState rowState)

Returns all pending changes in this table, given the row state.

o UpdateRowIdentity(string dataMember, object originalValue, object processedValue)

Updates and maps new identity of successive row inserts to intermediate objects in the

data source. This method is required for traditional and custom object binding.

P a g e | 33

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

The provided server side APIs, as described above, enables you to programmatically work against

pending changes data that submitted from client-side.

Several scenarios that can be achieved by using the provided APIs:

 Get the pending changes per table and per row state for further processing in your business

object level.

You can use GetChanges method at WebGrid or WebGridTable object to get the desired

changes.

The RowState enumeration includes the following values: Added, Modified and Deleted. You can

query the changes based on one or multiple RowState.

For example, the following C# codes show how to query pending changes for Added and

Modified state:

List<WebGridRowChanges> changes =

WebGrid1.RootTable.GetChanges(RowState.Added | RowState.Modified);

 foreach (WebGridRowChanges change in changes)

 {

 // process each changes

 }

Note that the pending changes data will not be submitted on WebGrid’s FlyPostBack™ actions

for performance wise. The changes will be available upon the following conditions:

o Full Postback.

o Accept Changes FlyPostBack™ action.

o ASP.NET AJAX callback.

 Perform batch update on a server-side button click. In some cases, you might prefer to have

your own button to process the pending changes, in addition to the user interface provided by

WebGrid.

You can achieve this task by calling PerformBatchUpdate method available in WebGrid object.

See the following C# sample:

private void Button1_Click(object sender, EventArgs e)

 {

 WebGrid1.PerformBatchUpdate(true);

}

The PerformBatchUpdate follows the same process and life cycle of batch update, such as

processing automatic object updates and invoking OnBatchUpdate event.

P a g e | 34

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

 Process pending changes programmatically and call your custom data access method to

perform physical update. This scenario is especially useful when you bind WebGrid to custom

object collection instead of dataset or datasource control.

The following C# codes show how to use many of the server-side methods to iterate each

change and update it using custom data access layer.

protected void WebGrid1_BatchUpdate(object sender, BatchUpdateEventArgs e)

{

 foreach (WebGridRowChanges rowChanges in e.PendingChanges)

 {

 CustomObjects.Customer customer = null;

 try

 {

 switch (rowChanges.RowState)

 {

 case RowState.Added:

 customer = new CustomObjects.Customer();

 MapChangesToObject(rowChanges.Data, customer);

 DataLayer.InsertCustomer(customer);

 break;

 case RowState.Modified:

 customer =

 DataLayer.GetCustomer(rowChanges.KeyValue.ToString());

 MapChangesToObject(rowChanges.Data, customer);

 DataLayer.UpdateCustomer(customer);

 break;

 case RowState.Deleted:

 customer =

 DataLayer.GetCustomer(rowChanges.KeyValue.ToString());

 DataLayer.DeleteCustomer(customer);

 break;

 }

 }

 catch (Exception exp)

 {

 // adds the Exception to batch update list to take advantage of

WebGrid's partial errors support.

 WebGrid1.AddBatchUpdateException(

new WebGridBatchUpdateException(rowChanges,

 new Exception("Record '" + rowChanges.KeyValue.ToString() +

"' has error '" + exp.Message + "'", exp)));

 }

 }

}

The following is the C# codes to map the changes into object.

private void MapChangesToObject(List<WebGridCellData> data,

CustomObjects.Customer customer)

 {

 foreach (WebGridCellData cellData in data)

 {

 string newText = cellData.NewText;

P a g e | 35

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

 switch (cellData.Column.DataMember)

 {

 case "CustomerID":

 customer.CustomerID = newText;

 break;

 case "Address":

 customer.Address = newText;

 break;

 ...

}

 }

 }

Codes Explanation:

 In custom object scenario, developers often have their own data access layer to perform data

management such as select, inserts, updates and deletes. Thus, you need to handle

OnBatchUpdate server side event to process the changes as shown in above sample codes.

 You can access all pending changes from e.PendingChanges, which is

List<WebGridRowChanges>.

 You iterate on each WebGridRowChanges. Then perform update based on the RowState value.

 Notice that we used strongly-typed custom object to perform data update in elegant fashion.

For add and modified changes, you need to map the changes into the object accordingly. In the

sample above, it is done with MapChangesToObject function.

 Call AddBatchUpdateException when an exception occurred. This enables the codes to continue

updating the other records. This error handling is also taking advantage of partial errors support.

P a g e | 36

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

Client-side data binding

Overview

WebGrid Enterprise™ 7 is strongly focused on enterprise web development which has been evolved to

adopt new web technologies such as cloud computing, software-as-a-service (SaaS) and other Web 2.0

related technologies.

Featuring a rock-solid client binding architecture, WebGrid Enterprise™ 7 is the most revolutionary

release yet which has undergone major revamp and re-engineered to meet the high performance

standards demanded by today’s web application.

The following sections discuss Intersoft’s approach to client data binding, its new technologies and

benefits, and how it resolves performance bottleneck without trading-off fundamental features.

What is client-side binding?

Client-side binding is a mechanism that processes data operation and binding life-cycle entirely in the

client-side.

Data binding consists of a series of data processing operation that takes a raw-form of data and shapes

it into a logical object, which is then rendered into user interface. Client-side binding simply means that

data binding should be performed in the client-side (also known as browser), rather than in the server-

side (ASP.NET).

All previous versions of WebGrid and most ASP.NET server-side controls perform data binding in the

server-side since .NET Framework already offer rich base class libraries to perform these operations

efficiently – such as data sorting, filtering, paging and other data access-related functions available in

dataset, data table and data view.

Server-side binding normally sent HTML markup as the final output, which is directly recognized by

browsers with very minimum overhead in the client side. In certain scenarios such as in data listing that

consist of many rows and cells, the HTML markup result could become huge and takes longer time to

transfer from the server to client. As a result, it could bring a potential performance problem that

impact user experience in overall.

Unlike server-side binding, client-side binding often returns raw data which has significantly smaller size

compared to HTML markup. WebGrid 7 incorporates new JSON (Javascript Object Notation) as its data

exchange format for all data transfer operation required in client binding.

The following diagram illustrates the new WebGrid’s architecture and client binding life cycle.

P a g e | 37

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

As seen in the above illustration, WebGrid Enterprise™ 7 is built on the top of solid client binding

architecture which processes data operation entirely in the client-side – from the data dispatching, data

shaping, binding to rendering.

Innovative VirtualRendering™

VirtualRendering™ is Intersoft’s state-of-the-art client rendering framework that enables WebGrid to

render data rows efficiently, while at the same time delivering identical user interface as in server-side

rendering.

This rendering technology is one of the key components in Intersoft’s client binding architecture that

transform logical data object into user interface elements.

The uniqueness of Intersoft’s rendering technology lies in its ability to perform rendering with very

minimum overhead. This is made possible with sophisticated state management that automatically

synchronizes its current state as user interacts with the Grid.

As a result, WebGrid doesn’t require a row to be rendered from scratch which could lead to

performance issues. Instead, it renders a row based on “delta algorithm” to produce high rendering

quality in superior performance.

One of the outstanding achievements of VirtualRendering™ is its small size of the client scripts required

to activate the client binding feature. Unlike traditional approaches that could bloat the client files up to

half a megabyte, WebGrid 7 adds only as little as 60KB for data binding processing, data shaping and

rendering.

Client-side

(browser)

Server

 (WebForm or Service)

New WebGrid Client

Abstraction Layer VirtualRendering™

Client requested data from a server

form, or a service.

Server returns

raw data in

JSON format.

Perform data

binding, process

it into logical

shape.

Perform smart

rendering and update

the user interface.

P a g e | 38

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

Benefits

Client-side binding provides comprehensive solution for developers to accomplish many advanced

scenarios and tasks which were previously difficult or not possible to be achieved. The following list

explains several key benefits of client-side binding:

 Data footprint reduction by over 90%.

When operating in client binding mode, WebGrid returns raw data in JSON format which is

significantly more compact compared to HTML markup. In many scenarios, WebGrid has been

proven to reduce data footprint consistently by over 90%. For more information, please refer to

Performance Benchmark and Comparison.

 Superior performance and increased response time.

With re-engineered architecture to support client binding extensively, WebGrid yields better

performance and increased response time as it skips several default behaviors, data processing

and rendering that used to be produced from server side. Learn the client binding concept for

more information.

 More responsive, intuitive user experience.

The nature of client-side binding – which exchange data in its raw format, enables WebGrid to

receive data faster from the server. As such, end user will get more responsive user experience

even in relatively slower network connection.

 Connect to external site or service-based datasource (“Cloud” support).

With solid client binding implementation, it enables developers to get the data from external

location such as mashup, or from service-based datasource such as Web service, Windows

Communication Foundation (WCF) service, as well as Microsoft’s new ADO.NET Data Service.

 Future proof – supporting more service-oriented development methodology.

Intersoft’s approach to client-side binding is an agnostic implementation that completely

independence from server-side object model. This enables WebGrid to perform data binding

based on any raw form of data in JSON format, which can be produced by a server hosted by

ASP.NET, PHP, or other platforms.

Based on the understanding of Intersoft’s client binding implementation, it also enables

developers to achieve a completely unbound scenario as well as future development

methodologies that are server-independence such as in ASP.NET MVC and Windows Azure™.

 Build Web 3.0, offline-capable application.

WebGrid Enterprise™ 7 includes new features that designed to help you build advanced Web

3.0 application easier and faster. You can combine WebGrid’s state-of-the-art features such as

client binding mode, in-line editing and batch update to build offline-capable application, which

enables end user to make changes anywhere and anytime even without connection to server.

P a g e | 39

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

Performance Benchmark and Comparison

The following charts illustrate the performance comparison between server-side and client-side binding

in several aspects, such as data footprint and network connection type. This section also shows the

comparison between different modes of client-side binding.

Data footprint size comparison on AJAX operation based on various Grid configurations

The chart above compares several modes in various Grid scenarios. Lower graph is better, which means smaller response size.

Data footprint size comparison on transactional operation

Lower graph is better, which means smaller response size.

0

50

100

150

200

250

Basic Grid Grid with data
formatting, grouping

and aggregation.

Grid with richer
features (sorting,
filtering, valuelist,

group interval, etc)

K
ilo

b
yt

e
s

(K
B

)

Server Binding

Client Binding
(Server mode)

Client Binding
(Web/Wcf
Service)

Client Binding
(Astoria)

0

2

4

6

8

Transaction operation (Insert, Update and Delete)

K
ilo

b
yt

es
 (K

B
) Server Binding

Client Binding
(Server mode)

Client Binding
(Web/Wcf
Service)
Client Binding
(Astoria)

P a g e | 40

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

Data footprint size comparison based on various Grid functions and data load mode is set to “AllData”

Lower graph is better. Notice that client binding with service mode have zero data footprint, since the data functions will be
done entirely in client side.

Response time comparison on AJAX operation (based on data footprint in first illustration above)

Lower graph is faster. The time measurement is per second.

*) Performance benchmark is tested on Intel® Core™ 2 Duo 2.4Ghz processor with 2 GB memory.

**) Tested samples are using the combination of Northwind’s Customers and Orders data table.

0

20

40

60

80

100

120

140

160

180

200

Sorting Grouping Filtering Paging

K
ilo

b
yt

e
s

(K
B

)

Server Binding

Client Binding
(Server mode)

Client Binding
(Web/Wcf
Service)

Client Binding
(Astoria)

0

2

4

6

8

10

12

14

16

18

56 kbps modem ADSL Broadband

Server Binding

Client Binding
(Server mode)

Client Binding
(Web/Wcf
Service)

Client Binding
(Astoria)

P a g e | 41

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

Supported Features and Limitations

WebGrid Enterprise™ 7 features unique client binding architecture that addresses performance

bottleneck as well as introduces numerous benefits , without trading-off essential Grid features.

Intersoft’s ClientBinding™ is designed to work in concert with key and fundamental features already

implemented in WebGrid. The following features have been tested – and have been further enhanced to

some extent – to fully support client binding operation mode:

 Column and UI operations

Column operations – such as resizing, moving and best fit – as well as UI operations – such as

drag drop, context menu, filter bar etc – are fully supported. More advanced features such as

column selection and column removing that require meticulous handling are supported as well.

 Thanks to VirtualRendering™, WebGrid’s new technology that provides sophisticated state

management as end user interacts with WebGrid, which enables WebGrid to perform dynamic

row binding and rendering regardless of the UI state.

 Layout features

Most layout and appearance features are fully supported in client binding mode – including all

details such as border, gridlines, and alternating row. As such, WebGrid renders high-quality,

identical user interface in the client side, as if it were rendered from server-side.

 Grid fundamentals

WebGrid 7’s ClientBinding™ is a comprehensive client binding architecture that takes account

every fundamental functions of WebGrid, in addition to many new features and capabilities that

it provides.

Fundamental WebGrid features – such as value list translation, column types, edit types, data

formatting, custom editors and many of WebGrid’s key features – continue to work flawlessly in

client binding mode. To learn more on the framework enhancements that made it possible,

please refer to comprehensive client data features.

 Sorting and Multiple Sorting

Data sorting is fully supported in client binding mode. Multiple columns sorting with different

sort direction is supported as well. For example, sort on ContactTitle in ascending order and

OrderDate in descending order.

 Grouping and Multiple Grouping

Data grouping is entirely performed in the client side, which enables multiple grouping and

grouping-related operations to be done without server-side callback. Several advanced grouping

features are also supported in client binding, such as group caption formatting, various group

intervals, and group mode.

P a g e | 42

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

 Filtering and Multiple Filtering

Client binding provides several implementation of filtering based on the selected data source

type and selected loading mode. When using client service type of data source such as

WebService and the service returns all data, WebGrid will perform filtering entirely in client side.

However, if the service is configured to return paged data, WebGrid will fetch the data from the

service through DataSourceSelectArguments. Refer to client binding concept to learn more.

 Column Footer, Group Total and Aggregation

Client binding fully supports data aggregation – such as Count, Average, Sum, Max and Min –

which are fundamental features in a data grid. The aggregation operation is performed entirely

in the client side without dependencies on server side, enabling WebGrid to recalculate the data

aggregation anytime during user interaction. For instance, group total and column footer result

will be updated instantly as user makes changes to the data.

 Paging – VirtualLoad™ and Classic™

Paging is a crucial feature in data grid and will continue to work flawlessly in WebGrid’s new

client binding mode. Regardless of the client datasource type, the paging function will work in

consistent behavior as if it were operating in server binding mode. Depends on the data loading

mode, WebGrid will automatically determine whether it should perform paging entirely in the

client side, or request a paged data from your service.

 Custom Tag Serialization (New)

When operating in client binding mode, WebGrid sent raw data instead of markup to the client

side. Often times, you will need to send custom information along with the data row being sent

to the client. A new property SerializeTagsToClient is introduced to address this requirement,

which is only applicable to ServerDataSource type.

 Transaction operations

Data transactions – such as insert, update and delete – work out-of-the-box in client binding

mode. When ServerDataSource is used and WebGrid is bound to updatable datasource control,

the transaction operations can be done automatically without additional codes. The same is true

for AdoDataSource which has full capability in data operations. For more information on how to

configure transaction operations in client service, please see Transaction Operations (Insert,

Update and Delete)

 Batch Editing (New)

SmartBatchUpdate™, a new major feature introduced in WebGrid Enterprise™ 7, is extensively

designed to work perfectly in client-side binding mode. When used together with client binding

feature, SmartBatchUpdate™ delivers a new editing experience that allows end user to view and

make changes to data entirely in client side. The combination of these features, along with

inline-editing transforms your application into offline-capable and cloud-ready Web.

P a g e | 43

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

 LiveFreeze™

Column freezing is supported in the same way it was supported in server-side mode. It has also

been enhanced for client binding mode, so that it preserves consistent behavior every time the

view has changed, such as upon sorting, filtering, paging – regardless of the client binding

datasource type and loading mode.

 Pivot Charting

Since Charting require WebGrid to perform extensive data aggregation in server-side, Pivot

Charting is supported only in ServerDataSource mode.

 More features

Intersoft’s ClientBinding™ technology isn’t merely a feature that capable to display plain data –

or leaves advanced features disabled. It is rigorously engineered from scratch to ensure it covers

advanced features available in WebGrid such as those explained above, as well as high

extensibility to support upcoming features.

In fact, ClientBinding™ supports nearly all WebGrid features that could end up in hundreds.

Some noteworthy features are preview row, columnset layout, automatic column fit, multiple

selection, section 508 standards, automatic row restoration, input masking, custom editors and

more.

WebGrid Enterprise™ 7 is focused on complete support for client binding in flat Grid mode, to ensure

high reliability with existing APIs and feature and best performance in various scenarios. The following

features are not supported in version 7, although the architecture has been properly designed to

support implementation for those features in the next version:

 Hierarchical Grid (Child Tables)

 Self Referencing

P a g e | 44

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

The Differences with Server-side Binding

This section provides information on how client-side binding differs to server-side binding in terms of

data processing and event life cycle. The details will also help you in upgrading existing implementation

that used server-side binding into client-side binding properly.

Server-side binding processes data binding, initialization and rendering in the following way:

Client-side binding includes a special ServerDataSource mode to enable you to quickly leverage existing

server-side infrastructure while taking advantage of many benefits introduced by client binding. This

means that you can still connect WebGrid to a server-side data source – such as SqlDataSource,

ObjectDataSource, LinqDataSource – or data source object assigned in InitializeDataSource event; while

performing data binding operation in the client side.

InitializeDataSource PrepareDataBinding
Data Operations

(sorting, grouping,
filtering)

Data BindingInitialize ColumnsInitialize Rows

Initialize Cells
Render Html

Markup
[Html Output]

P a g e | 45

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

Client-side binding using ServerDataSource mode processes data binding, initialization and rendering in

the following way:

As you can see in the illustrated diagram above, client-side binding mode stripped several processes

from the data binding, initialization and rendering process in server-side.

The key points of the differences can be summarized in the following:

 Physical data connection such as retrieving data from data source control and prepare data

binding event will still be invoked in client binding mode. The life cycle is consistent in both first

page load and FlyPostBack actions, and works in the same way as in server-side binding mode.

 Client binding shapes the raw data into semi-processed data, such as including important data

such as value list translation, sorted rows, and more. It doesn’t perform grouping operation.

 WebGrid intelligently repackages the data into rowset required only by the current view – taking

account paging, filtering and other aspects.

 WebGrid sent the repackaged data in JSON format – reducing over 90 percent of data footprint.

 Since the actual rendering does no longer occurring in the server side, the initialize events –

such as InitializeTable, InitializeColumn, InitializeRow and InitializeCell – are no longer invoked.

 As data binding is performed in the client side, WebGrid 7 provides new client side events for

data post-processing requirements.

As such, if you have existing codes that perform initialization in one of the above mentioned events, the

codes will no longer work. You’ll need to migrate the codes to the appropriate client-side events.

InitializeDataSource PrepareDataBinding
Non-grouping Data

Operations

Data Repackaging
(See Elegant Binding

Concept)

Render semi-
processed data in

JSON format.

Client-side data
dispatch

Client-side data
binding

Client-side binding
events

P a g e | 46

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

For example, consider the following C# codes to handle post-processing in InitializeRow server-side

event:

 protected void WebGrid1_InitializeRow(object sender, RowEventArgs e)

 {

 if (e.Row.Type == RowType.Record)

 {

 WebGridCell hasAttachment =

e.Row.Cells.GetNamedItem("HasAttachment");

 WebGridCell isUnread = e.Row.Cells.GetNamedItem("IsUnread");

 WebGridCell priority = e.Row.Cells.GetNamedItem("Priority");

 WebGridCell size = e.Row.Cells.GetNamedItem("Size");

 if (hasAttachment.Value.ToString() == "True")

 hasAttachment.Text = "./images/Attachment.gif";

 else

 hasAttachment.Text = "./images/wg_blank.gif";

 if (isUnread.Value.ToString() == "True")

 isUnread.Text = "./images/message.gif";

 else

 isUnread.Text = "./images/wg_blank.gif";

 if (priority.Value.ToString() == "1")

 priority.Text = "./images/high.gif";

 else

 priority.Text = "./images/wg_blank.gif";

 size.Text += " KB";

 }

 }

Since InitializeRow is no longer invoked, the above codes will not be executed. To achieve the same

post-processing in client binding mode, handle the OnInitializeRow client-side event. Thanks to

Intersoft’s client framework architecture that mimics server-side object model, you can easily convert

the C# codes to Javascript such as shown in the following:

function WebGrid1_OnInitializeRow(id, row)

 {

 if (row.Type == "Record")

 {

 var hasAttachment = row.Cells.GetNamedItem("HasAttachment");

 var isUnread = row.Cells.GetNamedItem("IsUnread");

 var priority = row.Cells.GetNamedItem("Priority");

 var size = row.Cells.GetNamedItem("Size");

 if (hasAttachment.Value.toString() == "true")

 hasAttachment.Text = "./images/Attachment.gif";

 else

 hasAttachment.Text = "./images/wg_blank.gif";

 if (isUnread.Value.toString() == "true")

 isUnread.Text = "./images/message.gif";

 else

 isUnread.Text = "./images/wg_blank.gif";

 if (priority.Value.toString() == "1")

 priority.Text = "./images/high.gif";

 else

 priority.Text = "./images/wg_blank.gif";

P a g e | 47

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

 size.Text += " KB";

 }

 }

With above codes, you can achieve custom requirements with identical results between client and

server binding mode.

Elegant Client Binding Architecture

WebGrid Enterprise™ 7 relies heavily on a solid client data framework in order to perform client binding

efficiently, and to support existing features in various configurations and scenarios.

The following sections discuss Intersoft’s client binding technology such as CDOF (Client Data Object

Framework), data loading mode, transaction and batch update support, and more.

Client Data Object Framework

Intersoft’s Client Data Object Framework can be illustrated as a lightweight, mini version of Microsoft’s

ADO.NET Framework. Client Data Object Framework will be further called CDOF in the following section.

CDOF includes client-side implementation of DataSet, DataTable and DataView – which acts as the

backbone of all client-side data operations in WebGrid. The ISDataSet and ISDataTable represent the

main data object which is then used by WebGrid for further processing such as data shaping, formatting,

paging and more.

The following illustration describes the overall client binding processing in WebGrid.

Data binding processing, such as data aggregation, formatting, grouping, value list translation, and finally
rendering via VirtualRendering™.

ISDataView processes data shaping. It implements high-performance Sorting and RowFilter with identical
syntax and behavior to Microsoft's ADO.NET Framework

ISDataTable.GetDefaultView(), returns ISDataView for the requested table view

Dispatch raw data sent from server/service, convert it into ISDataSet/ISDataTable

P a g e | 48

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

As shown in above illustration, WebGrid doesn’t process data shaping by its own – but it relies on CDOF

to obtain finalized data shape, which is then processed further by VirtualRendering™. This unique

architecture model enables clean separation between data abstraction layer and rendering layer –

making it easy to be consumed by WebGrid and other WebUI Studio® family that requires client binding

implementation in the future.

In addition to the overall binding process as shown above, it’s also important to understand the new

process model and events life cycle in WebGrid. The following information explains the client binding

process life cycle in details:

With rock-solid foundation implemented in Client Data Object Framework, WebGrid Enterprise™ 7 sets a

new standard for “cloud”-ready application by providing comprehensive, reliable client binding platform

that supports enterprise scenarios and advanced features at the same time, as well as high extensibility

for future’s platform and technologies.

OnResponse

•WebGrid receives raw data response from server-side.

•WebGrid passes the raw data to CDOF to process it into
CDOF data object.

•With CDOF-compatible data object as the backbone,
WebGrid processes it further for its logical object binding.

Core Binding

•OnDataSourceChanged event is fired after data is dispatched.

•OnInitializeRow event is fired during each row creation.

•OnInitializeCell event is fired during each cell creation.

•OnDataBound event is fired after data binding is completed.

Core Rendering

•OnPreRender event is fired before the rendering process is
started.

•OnPostRender event is fired after rendering is completed.

•OnSynchronizeRow event is fired to synchronize newly
rendered row to its Row object.

•OnSynchronizeCell event is fired to synchronize newly rendered
cell to its Cell object.

P a g e | 49

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

Rich Client-side Data Processing

In addition to providing solid client binding platform, Client Data Object Framework™ (CDOF) also

enables many client-side data processing which were previously difficult or not possible to be achieved.

The following lists the key features of client-side data processing:

 Client-side Data Formatting.

One of the most powerful features in CDOF is its comprehensive data formatting function. It

supports composite data formatting such as string, date time and number formatting. It also

takes account Culture information. You can think it as a client-side implementation of .NET Data

Formatting Library.

The data formatting feature is heavily used in client-side binding operation to display formatted

values instead of raw values.

For example, your data service often returns number value in its simple form such as “50.9”.

However, you may want to have WebGrid displayed the value using “$ #,##.#0” format in “en-

US” culture which will format the value as “$ 50.90”.

WebGrid automatically honors the DataFormatString value that you specified in

WebGridColumn, and will format it according to the selected culture info.

 Client-side Sorting.

CDOF implements high-performance client-side sorting that is capable to sort multiple columns

in a fraction of seconds.

The client sorting also supports different sorting direction on each column. For instances, sort

on Country descending, while ContactTitle ascending.

The client sorting is implemented at data access level instead of UI level – enables developers to

have greater control over data shaping process. The sorting feature is implemented at

ISDataView class.

 Client-side Filtering.

CDOF features comprehensive filtering support enabling developers to easily perform row

filtering at data object level. The client-side filtering implements syntax that is fully compatible

with server-side ADO.NET Framework’s filter expression – making it easy for .NET developers to

consume client-side filtering features.

The client-side filtering supports the following standard operators:

o Equals to (=)

o Not equals to (<>)

P a g e | 50

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

o Greater than or equals to (>=)

o Greater than (>)

o Less than or equals to (<=)

o Less than (<)

It also supports more advanced operators such as:

o Like

o Contains

o Nested Conditioning Group

The value of the filter expression can be either one of the following types:

o String. The value part of the expression should to be enclosed by quote character (‘)

o Boolean. The value part can be written directly as it is.

o Number. The value part can be written directly as it is.

o DateTime. The value part should be enclosed by sharp character (#)

The following samples show various filter expression supported in CDOF.

a. Basic string-type filter expression.

[ContactTitle] = ‘Owner’ and *Country+ = ‘USA’

b. Filter expression on various types with group.

(([ContactTitle+ = ‘Owner’ or *ContactTitle+ like ‘sales’) and (*OrderDate] > #1/1/2008# and

[OrderDate] < #1/1/2009#))

c. Number filter expression.

[OrderAmount] > 123.45 and [OrderAmount] < 456.78

d. Filtering out null or empty data.

[Region] <> null and [Region] <> ‘’

 Client-side Paging.

Because CDOF implements data shaping processing entirely in client side, it enables paging to be

performed in client-side as well.

Client-side paging is fairly easy to be implemented at control/UI level, as long as final data shape

has been made available. WebGrid 7 implements client-side paging in its own process to support

more comprehensive paging options such as VirtualLoad™ and Classic™ paging, as well as to

gain better control over the paging process based on various data source types and scenarios.

P a g e | 51

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

Data Loading Mode

WebGrid 7’s ClientBinding™ includes two type of data loading mode for client-based data service,

regardless of the paging mode of WebGrid in User Interface level.

Data selection can be configured as easy as declarative property set – without requiring you to write

Javascript code. For data selection to work, simply set the SelectMethod property in the ServiceMethods

to the method name used for data retrieval in your data service.

Data loading modes are:

 AllData.

If your data service is designed to return all data, then you should choose AllData as the value of

DataLoadMode property.

Tips: You can still enable UI paging in WebGrid level, such as VirtualLoad™ or Classic™ paging.

When UI paging is enabled in this mode, WebGrid will perform paging in client-side. This means

that page navigation will not require server round-trip, as it’s performed and rendered entirely

in client side. The same goes true for other data operations, such as sorting, filtering and

grouping.

 PagedData.

If your data table contains relatively large amount of data, you may want to retrieve only subset

of the data for the current view. In this case, you should consider using PagedData mode.

When using this mode, you are responsible to design your data service to return only paged

data based on the information requested by WebGrid.

Intersoft’s ClientBinding™ introduces an elegant approach that enables you to easily retrieve

paged data in your data service. ClientBinding encapsulates essential select arguments into an

object called DataSourceSelectArguments. This object is always passed to the parameter of your

Select method, enabling developers to easily perform data selection based on the information.

See Paged Data C# sample to see how ClientBinding™ handles data paging elegantly.

When data operation – such as sorting and filtering – is performed in PagedData mode,

WebGrid will send a request to the specified data service by including complete request data in

the selectArguments parameter. Developers are responsible to handle the sorting, filtering and

paging based on the select arguments. In addition, WebGrid will also send a SelectCount request

when it needs to invalidate the paging status.

Important: When PagedData data loading mode is used, you are required to enable one of the

paging mode available in WebGrid, such as VirtualLoad™ or Classic™ paging mode.

P a g e | 52

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

DataSourceSelectArguments class contains the following properties:

 FilterExpression. The string of filter expression based on ADO.NET syntax.

 SortExpression. The string of sort expression based on ADO.NETsyntax.

 MaximumRows. The number of maximum rows to be retrieved.

 OperationType. The type of the operation for this request.

 StartRowIndex. The start index of the row to be retrieved.

 ViewName. The view name or table name to be selected.

 Tag. Custom information passed from client-side.

Additionally, a special method GetLinqFilterExpression is provided to convert ADO.NET filter expression

into LINQ-compatible filter expression. This method is specifically useful for data service that used LINQ

to retrieve data.

The following C# sample shows how you can easily retrieve paged Orders data by using DataContext,

LINQ to SQL, and dynamic LINQ.

 [WebMethod]
 public object GetPagedData(DataSourceSelectArguments selectArguments)

 {

 NorthwindDataContext context = new NorthwindDataContext();

 context.DeferredLoadingEnabled = false;

 var pagedData = context.Customers.AsQueryable();

 // handle sorting

 if (!string.IsNullOrEmpty(selectArguments.SortExpression))

 pagedData = pagedData.OrderBy(selectArguments.SortExpression);

 // handle filtering

 if (!string.IsNullOrEmpty(selectArguments.FilterExpression))

pagedData =

pagedData.Where(selectArguments.GetLinqFilterExpression());

 if (selectArguments.OperationType == SelectOperation.SelectData)

 {

 // handle paging

 if (selectArguments.MaximumRows > 0)

 pagedData =

pagedData.Skip(selectArguments.StartRowIndex).Take(

selectArguments.MaximumRows - selectArguments.StartRowIndex);

 return pagedData.ToList();

 }

 else if (selectArguments.OperationType == SelectOperation.SelectCount)

 return pagedData.Count();

 throw new InvalidOperationException("Unsupported operation type!");

 }

P a g e | 53

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

Transaction Operations (Insert, Update and Delete)

ClientBinding™ fully supports transaction operations for data service types – in the same elegant way as

in data selection process.

The ServiceMethods object includes the following properties to handle transaction operations:

 InsertMethod.

 UpdateMethod.

 DeleteMethod.

Similar to SelectMethod, you need to have corresponding methods in your data service which is used to

handle each operation. The method name is then set to each property.

ClientBinding™ handles the complex serialization and deserialization process automatically. As a result,

you can develop your transaction methods in an elegant way by accepting the original and new item

object. For this to work, you need to set the corresponding object name in ItemTypeName property, and

provide the class structure of your object in the client-side.

The following example shows how you can support update operation for Customers table in WebGrid.

First step, create the corresponding class of Customer in the client-side and set ItemTypeName property

to Customer.

 function Customer()

 {

 this.__type = "Customer";

 this.CustomerID = "";

 this.CompanyName = "";

 this.ContactName = "";

 this.ContactTitle = "";

 this.Address = "";

 this.City = "";

 this.Region = "";

 this.PostalCode = "";

 this.Country = "";

 this.Phone = "";

 this.Fax = "";

 }

Next, create a method in your data service to handle the update operation. This sample is using

WebService as the data service and LINQ-to-SQL as the data access.

 [WebMethod]

 public TransactionResult UpdateCustomer(Customer newObject, Customer

originalObject)

 {

 TransactionResult result = new TransactionResult();

 NorthwindDataContext context = new NorthwindDataContext();

 context.Customers.Attach(newObject, originalObject);

 try

 {

 context.SubmitChanges();

P a g e | 54

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

 }

 catch (ChangeConflictException conflictException)

 {

 result.Exception = new JsonException(conflictException);

 }

 catch (Exception exception)

 {

 result.Exception = new JsonException(exception);

 /* set ExceptionHandled to true to suppress error message in the client

 side

 result.ExceptionHandled = true;

 */

 }

 result.OperationType = DataSourceOperation.Update;

 return result;

 }

Finally, set the UpdateMethod of your WebGrid to UpdateCustomer.

As illustrated in the above sample, the update method consisted of the following processes:

 The method signature should return TransactionResult object and accept two parameters which

are newObject and originalObject.

 If an error occurred during transaction process, assign the exception into Exception property.

The type should be JsonException which encapsulates .NET Framework’s original Exception

object.

 Set the OperationType of the transaction result accordingly.

 Returns the transaction result.

Similarly, the Insert and Delete operation also includes patterned method signature. The following

explains the method signature of each operation.

 public TransactionResult <InsertMethod> (<Object> newObject)

 public TransactionResult <UpdateMethod> (<Object> newObject, <Object> originalObject)

 public TransactionResult <DeleteMethod> (<Object> originalObject)

WebGrid 7’s transaction operations work best with .NET Framework 3.5 data access technologies such

as LINQ to SQL and ADO.NET Entity Framework. As the above sample shows, transaction operations can

be done in elegant way, hassles-free and very straightforward.

P a g e | 55

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

Batch Update Support

As if ClientBinding™ isn’t comprehensive enough, it also includes a unique implementation of Batch

Update that is provider independent – making ClientBinding™ the most advanced and reliable

technology to address your ever-dynamic, “cloud”-ready enterprise Web 2.0 application.

WebGrid introduces SmartBatchUpdate™, a major feature introduced in version 7 that revolutionizes

data editing by enabling multiple editing in the client-side and then submit all changes in a single

request. This new batch update feature also supports batch update operation in data service.

Similar to data transaction operations, implementing batch update in data service can be done elegantly

through strongly-typed object model.

The batch update method has the following signature:

public TransactionResult <BatchUpdateMethod> (List<ClientRowChanges> changes)

The BatchUpdateMethod property is also made available in ServiceMethods object, which you can

specify according to the name of web method in your data service.

When batch update feature is enabled and the client binding mode is using data service, WebGrid will

automatically submit all changes by invoking the web method specified in BatchUpdateMethod.

WebGrid submit all changes in an object collection of List<ClientRowChanges>. In your data service end,

you can easily loop on the provided changes collection, and perform physical update according to the

modification state of each change.

The following C# sample shows how to perform batch update in WebService. The sample used LINQ-to-

SQL and DataContext as the data access.

 [WebMethod]

 public TransactionResult UpdateCustomers(List<ClientRowChanges> changes)

 {

 TransactionResult result = new TransactionResult();

 NorthwindDataContext context = new NorthwindDataContext();

 foreach (ClientRowChanges change in changes)

 {

 try

 {

 if (change.RowState == ClientRowState.Added)

 {

 context.Customers.InsertOnSubmit((Customer)change.NewObject);

 }

 else if (change.RowState == ClientRowState.Deleted)

 {

 context.Customers.Attach((Customer)change.OriginalObject);

 context.Customers.DeleteOnSubmit((Customer)change.OriginalObject);

 }

 else if (change.RowState == ClientRowState.Modified)

 {

 context.Customers.Attach((Customer)change.NewObject,

(Customer)change.OriginalObject);

 }

 }

P a g e | 56

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

 catch (Exception exception)

 {

 result.Exception = new JsonException(exception);

 /* set ExceptionHandled to true to suppress error message in the

client side

 result.ExceptionHandled = true;

 */

 }

 }

 // no errors during object attachment, ok to proceed

 if (result.Exception == null)

 {

 try

 {

 // submit all changes in batch

 context.SubmitChanges();

 }

 catch (Exception exception)

 {

 result.Exception = new JsonException(exception);

 }

 }

 result.OperationType = DataSourceOperation.BatchUpdate;

 return result;

 }

The batch update method works in similar way to other data operations, except it includes more

information about a row change which is encapsulated in ClientRowChanges object.

The ClientRowChanges consisted of the following properties:

 RowState. The changes state of the row.

 TableName. The table name of the changed row.

 NewObject. The new object that user adds in the client side.

 OriginalObject. The original object that doesn’t contain user changes, which is required for

Update and Delete operation.

Service Events

All data operations in data service are powered with a solid, provider-based architecture that is highly

extensible and scalable.

Client data services that supported by WebGrid 7 such as WebService, WcfService and

AstoriaDataSource inherit the same data source provider base. As a result, these data services share the

same process life cycle, same events and behaviors.

Client data services support the following events:

 Selecting. Invoked when the data provider is about to perform data selection.

 Selected. Invoked after the data provider has successfully selecting data.

 Updating. Invoked when the data provider is about to perform data update.

P a g e | 57

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

 Updated. Invoked after the data provider has successfully updating data.

 Inserting. Invoked when the data provider is about to perform data insert.

 Inserted. Invoked after the data provider has successfully inserting data.

 Deleting. Invoked when the data provider is about to perform data delete.

 Deleted. Invoked after the data provider has successfully deleting data.

 BatchUpdating. Invoked when the data provider is about to perform batch update.

 BatchUpdated. Invoked after the data provider has successfully perform batch update.

Each operation includes pre and post event for complete customizability. The pre event such as

Selecting can be cancelled with a return false statement.

These service events are available in ServiceEvents object which is located in ClientBindingSettings.

Client Data Source and Data Service

The following sections explain the client data source implemented in ClientBinding™.

There are three general types of client data source:

1. Server-side data source.

2. Service-based data source.

ClientBinding™ includes three built-in data providers implementation for data service, which are

Web Service, WCF Service and ADO Data Service.

3. Client-side data source.

Server-side data source

This data source type enables you to continue using server-side data source in WebGrid. Supported

server-side data source are:

 Datasource controls, such as AccessDataSource, LinqDataSource, ObjectDataSource, etc.

 Datasource object, which is assigned in InitializeDataSource event (also known as Traditional

Binding).

This data source type is designed to help you leverage and reuse existing infrastructure which has used

server-side data source, while at the same time enables you to take advantage of many client binding

benefits such as improved performance and reduced data footprint.

To learn the difference between server-side binding mode and client-side binding mode with server-side

datasource type, please see The Difference with Server-side Binding.

Server-side data source type is the quickest and easiest way to take advantage of client-side binding.

You don’t need to create web service or data service as WebGrid seamlessly connects to server-side

data source for data retrieval, which is then repackaged into lightweight format for further processing in

the client-side.

P a g e | 58

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

Web Service

WebService data source type enables you to connect WebGrid to a web service in elegant fashion,

which is done through properties configuration without requiring any Javascript codes.

To connect WebGrid to a web service, simply specifies the service address in the provided ServiceUrl

property and specifies the web method used to retrieve data in SelectMethod property.

WebService will automatically activate full client-side operation mode when your data service returns all

data. It also supports paged data retrieval for optimized performance.

WebService fully supports data transaction operations such as insert, update, and delete. It also

supports more advanced operation such as batch update.

Markup example:

<ClientBindingSettings DataSourceType="WebService” ServiceUrl="~/Service1.asmx">

 <ServiceMethods SelectMethod="GetData"/>

</ClientBindingSettings>

Important: Your web service should have capability to return output in JSON format as client binding

will accept only data in JSON format. If you’re developing web service in ASP.NET 3.5, then your web

service has supported JSON response format.

Windows Communication Foundation (WCF) Service

WcfService data source type enables you to connect WebGrid to a Windows Communication Foundation

service in elegant fashion, which is done through properties configuration without requiring any

Javascript codes.

To connect WebGrid to a WCF service, simply specifies the service address in the provided ServiceUrl

property and specifies the web method used to retrieve data in SelectMethod property.

WcfService will automatically activate full client-side operation mode when your data service returns all

data. It also supports paged data retrieval for optimized performance.

WcfService fully supports data transaction operations such as insert, update, and delete. It also supports

more advanced operation such as batch update.

Markup example:

<ClientBindingSettings DataSourceType="WcfService” ServiceUrl="~/WcfService.svc">

 <ServiceMethods SelectMethod="GetData"/>

</ClientBindingSettings>

Important: Your web service should have capability to return output in JSON format as client binding

will accept only data in JSON format. If you’re developing WCF service in ASP.NET 3.5, then your web

service has supported JSON response format.

P a g e | 59

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

ADO.NET Data Service (Astoria)

ADO.NET Data Service is Microsoft’s latest data service technology introduced in .NET Framework 3.5

SP1. It enables data to be consumed programmatically through standard Web protocols such as REST,

XML, SOAP and JSON. To learn more about ADO.NET Data Service, please visit ADO.NET Data Service

Home.

Intersoft’s ClientBinding™ is the first in the industry that implement full support for this cutting-edge

technology.

To connect WebGrid to an ADO.NET data service, all you need to do is specifying the service address in

the provided ServiceUrl property.

Astoria enables programmatic data access over the Web with very minimal efforts, which includes

support for sorting, filtering and paging. It also includes native support for data transactions such as

insert, update, delete, as well as more advanced operation such as batch update.

ClientBinding™ fully takes advantage of Astoria capabilities and implement direct interface to access

Astoria’s functionalities. As a result, you are not required to specify any of the service methods.

The following example shows a simple declarative markup to enable all data operations.

<ClientBindingSettings DataSourceType=”AdoDataService”

ServiceUrl="~/WebDataService1.svc" ItemTypeName="Customer">

</ClientBindingSettings>

Note: The current version of Astoria doesn’t support complete paging feature yet. Therefore, you can

only use AllData loading mode when using AdoDataService type.

Client-side data source

Client data source type allows you to assign a completely custom data source in client-side. When this

type is used, WebGrid doesn’t perform data loading automatically as the required datasource is not

available.

This type is specifically useful when you need to retrieve datasource from external sites or data services

that are not supported in Intersoft’s ClientBinding™. For example, you may have a requirement to fetch

data from an external site manually in the client-side, and then pass the resulted data to WebGrid via

API calls for data binding.

Pure client-side binding takes as little as three lines of code, such as shown in the following:

grid.SetDataSource(dataSource);

grid.DataBind();

grid.Render();

WebGrid accepts ISDataSet, ISDataTable or any array-based collection as data source. For more

information about client binding API, please see Client Binding API

http://msdn.microsoft.com/en-us/data/bb931106.aspx
http://msdn.microsoft.com/en-us/data/bb931106.aspx
http://msdn.microsoft.com/en-us/data/bb931106.aspx

P a g e | 60

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

Client Binding Consideration and Best Practices

This section discusses the consideration for using client binding mode in your application, along with

best practices for several common scenarios.

Considerations

Although client binding offers numerous benefits, it doesn’t always fit to all scenarios. If your application

is running locally in corporate network or on fast broadband network, and that your application doesn’t

require connecting to a service-based datasource, you may consider to stay with server binding mode.

Likewise, if your target users run on thin-client with slightly limited resources, or slower terminal – client

binding might not be suitable as client binding performs all operations – such as populating data,

formatting, sorting, filtering, grouping, paging and more – entirely in client side.

Client binding can be generally viable with paged data loading mode, which balances the workload

between server and client side. The following sections describe best practices for several scenarios.

Best practice #1 – Using ServerDataSource with Paging enabled

If you’re already using WebGrid in your application (which means they were using server binding by

default), you may consider using ServerDataSource mode to reuse your existing server assets and

infrastructure when migrating to client binding.

ServerDataSource is the mode that requires the most minimal changes to your code. If you don’t have

post-binding processing in your codes (such as codes in InitializeRow, InitializeCell etc), the migration to

client binding is almost seamless without any changes required.

In the above case, you simply need to set DataSourceType of ClientBindingSettings to ServerDataSource.

Run your page to ensure everything is working fine.

Best practice #2 – Using WebService with PagedData loading mode

If you’re considering developing application that retrieves data from data service, you can consider using

WebService or WcfService depending on your server infrastructure.

To anticipate the growth of the data size returned by your data service, you can prepare your data

service to return paged data instead of all data. This ensures your application to extend and scale up

properly in the future.

Best practice #3 – Using AdoDataService

If you’re considering developing data service platform that is accessible over the Web from various

clients such as Silverlight or Web application – you may consider building ADO.NET data service.

Limitations

You can’t use client-side binding when your WebGrid require specific features that are not supported in

this version of WebGrid. For more information on the limitations, please see unsupported features in

client binding.

P a g e | 61

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

Client Binding Configuration with Component Designer

ClientBinding™ provides comprehensive settings to support various scenarios used for enterprise Web

2.0 application. Thanks to the improved Smart Tag and Component Designer – making client binding

configuration very easy.

To quickly getting started with client binding, open WebGrid’s Smart Tag, then click Advanced as shown

in the following.

WebGrid’s award-winning Component Designer streamlines all client binding configurations in an

intuitive user interface, making it easy for you to work with various client binding options. For your

convenience, it also includes hints/tooltip description in each option.

P a g e | 62

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

Client Binding API

The client binding architecture included in WebGrid Enterprise™ 7 is a set of comprehensive new

classes, methods and interfaces to enable programmatic consumption in elegant fashion. Most of the

user interface functions and high-level encapsulation of binding process called the same underlying APIs.

The following sections explain the new public methods and events which are available when client

binding mode is enabled and the data source type is set to either client services or client data source.

New methods

Several methods have been added as extensions to provide programmatic client binding functionality.

These methods will only be available when client binding feature is enabled.

Class New Method Parameters

WebGrid
SetDataSource (Assign a new client-side datasource to
WebGrid)

dataSource, tableName

GetConvertedDataSource (Gets the datasource that has
been converted to CDOF-compatible object)

-

DataBind (Instructs WebGrid to perform data binding
based on assigned datasource)

-

LoadData (Instructs WebGrid to perform initial data
loading)

-

 Render (Perform rendering based on bound data) -

 RebindData (Rebind WebGrid with new datasource) dataSource, skipDataDispatch

WebGridTable
GetUngroupedRows (Gets ungrouped rows collection of
this table)

-

GetRowByKeyValues (Gets the WebGridRow based on
the specified key values)

keyValues

 DispatchDataTable (Gets the CDOF data table object) -

 GetView (Gets the CDOF data view object) -

 DataBind (Perform data binding for this table) -

FillDataSourceArguments (Populate view state into data
source arguments used for data retrieval operation)

srguments, sortState, filterState, pagingState

GetSortExpression (Gets the sort expression required to
construct the view for this table)

GetFilterExpression (Gets the filter expression required
to construct the view for this table)

 Render (Render the view for this table) subTable

P a g e | 63

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

UpdateDataStatus (Updates the status of current
datasource to UI)

-

WebGridRow
GetGroupRowLevel (Gets the group row level of this
row)

-

HasCollapsedParent (Whether this row has collapsed
parents)

-

HasGroupedChilds (Whether this row has grouped child
rows)

-

HasExpandedChilds (Wheter this row has expanded
chlid rows)

-

ExpandGroupRowsToThisRow (Expand all parent group
rows down to this row)

-

CopyTo (Copies this row’s structure and data to
destination object)

targetObject, isModifiedOnly,
followTargetStructure

New client side events

The following table describes the new client side events related to client binding feature.

Event Name Description Parameters

OnCustomAggregate
Fired when WebGrid needs to perform custom
aggregation for column which AggregateType is set
to Custom.

controlId, columns, rows, type

OnInitializeRow Fired when a row is initialized. controlId, row

OnInitializeCell Fired when a cell is initialized. controlId, cell

OnSynchronizeRow Fired when a row requires synchronization. controlId, row

OnSynchronizeCell Fired when a cell required synchronization. controlId, cell

OnDataSourceChanged Fired when data source has been changed. controlId

OnDataBound Fired when data binding process is completed. controlId

OnPreRender Fired before WebGrid enters rendering phase. controlId

OnPostRender Fired after rendering operation is completed. controlId

P a g e | 64

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

Other Enhancements
In addition to major new features such as described in above topics, WebGrid Enterprise™ 7 also

includes enhancements to various areas based on customer feedback. These enhancements are

designed to help you achieving complex scenarios in professional approach.

Improved user interface

WebGrid Enterprise 7 improves various user interface factors, making it more intuitive for end user to

work with information. Many of these enhancements work in concert with new features introduced in

WebGrid Enterprise™ 7.

For instance, when both batch update and allow add

feature are enabled, a special “paste multiple rows”

menu item will appear in the row context menu. This

command enables you to import data from external

documents such as Excel® spreadsheet – and then

easily transfer the data into WebGrid with a single

click.

WebGrid 7 also includes adaptive status bar, a new user interface enhancement that automatically

arranges all commands in the status bar – making it hassle-free for you to use WebGrid features without

have to worry your user’s screen real-estate.

P a g e | 65

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

New client side events for inline editing

With strong focus in data editing enhancement, WebGrid 7 enables developers to have greater control

and customizability over the editing process by introducing four new client side events as listed below:

 OnAfterExitEditMode. The parameters are controlId, tableName, editObject.

This event is invoked after user exit cell-level editing. Unlike OnExitEditMode event,

OnAfterExitEditMode is fired after default editing process is completed, making it possible for

you to inspect the new cell values and perform custom logic.

 OnBeginRowEditing. The parameters are controlId, row.

This event is invoked when user begin to edit a row. Unlike OnEnterEditMode, this event is fired

only one-time when a row is about to be edited. Furthermore, this event is applicable on row-

level instead of cell-level.

 OnEndRowEditing. The parameters are controlId, row.

This event is invoked when user ended row editing completely. Similar to OnBeginRowEditing,

this event is applied on row-level, and is called only one-time when user ended row editing. This

event is fired after OnExitEditMode and before OnRowValidate.

 OnCancelRowEditing. The parameters are controlId, row.

This event is invoked when user canceled row editing. This new client side event enables you to

process custom logic when user canceled the editing. For example, you may want to validate if

the cancelation has met specific condition before the cancelation is allowed to be processed

further.

Enhanced integration with WebCombo

Since its initial release, WebGrid Enterprise™ has been well known with its tight integration with other

Intersoft’s products, especially integration with WebCombo™.

In version 7, WebGrid enhances the WebCombo integration further in various scenarios such as when

used in Custom and Image column type.

WebGrid 7 enables you to achieve more complex

scenarios to deliver richer user experience, such as using

Custom column type to display custom images. You can

use WebCombo to allow your users to edit such type of

information more intuitively.

When WebCombo is used in Custom column type,

WebGrid automatically map the cell’s value to the text

field of WebCombo, while maintaining default inline

editing behavior.

P a g e | 66

WebGrid Enterprise™ 7 White Paper.
Private and confidential. © 2009 Intersoft Solutions Corp.

Default Style Merging

WebGrid Enterprise™ 7 introduces Default Style Merging, a new feature that automatically merges your

customized styles with default style.

Default Style, a feature introduced in version 5 is designed to let you easily change WebGrid’s theme in a

single property set. However, you can no longer customize WebGrid styles when you activate this

feature without additional workaround. Default Style Merging is designed to address this limitation,

makes it easy for you to customize WebGrid styles while preserving the original default styles.

To enable Default Style Merging feature, simply set AllowDefaultStyleMerging property to true. This new

property can be found in LayoutSettings object.

For example, the following screenshot shows WebGrid with Elegant default style.

Next, assume you would like to change the font’s color to Red, you would have the following style

definition in LayoutSettings.

<HeaderStyle ForeColor="Red" />

The following shows the comparison two different results.

Without Default Style Merging

The header’s default style is lost after you defined
custom header style.

With Default Style Merging

The header’s default style is flawlessly merged with
your custom header style.

