
WebCombo.NET 4.0 White Paper
This white paper discusses breaking changes, enhancements and new features available in
WebCombo.NET 4.0.

Table of Contents
I. Introduction .. 2

II. About WebUI.NET Framework 2007 R1 .. 2

Changes in WebUI.NET Framework that may affect WebCombo.NET 4.0 functionality 2

New Features in 2007 R1 .. 4

Enhanced View StateStorage™ w ith the new OptimizedState architecture ... 4

Selective ViewState saving with the new ViewStateItems feature .. 4

New Cache-To-Disk option for View StateStorage™ ... 5

Best practices and com m on scenarios for View StateStorage™ usage ... 7

New Deployment Manager ... 8

New Sm artW ebResources™ Fram ew ork .. 8

New License Manager ... 16

All-new Vista-style user interface for Windows GUI application .. 17

Benefits introduced in 2007 R1... 17

Backward Compatibility .. 18

III. Breaking Changes in WebCombo.NET 4.0 .. 18

Object model ... 18

User Interface ... 18

Default Values ... 18

Styles ... 19

IV. Upgrading from previous version ... 19

V. W hat’s New in 4.0 ... 19

I. Introduction
WebCombo.NET 4.0 is the successor of the previous version of WebCombo.NET which offer
significant enhancements and numerous exciting new features. WebCombo.NET 4.0 is
focused on productivity features designed specifically for Visual Studio 2005 development
environment, such as ObjectDataSource data binding support and SmartTag Designer – and
thus WebCombo.NET 4.0 supports only Visual Studio 2005 family.

WebCombo.NET 4.0 is reengineered from scratch to deliver cleaner and lighter output for
faster page rendering. As one of our commitment for Web Standard, WebCombo.NET can
now render and function properly in XHTML 1.1 Transitional DocType.

WebCombo.NET 4.0 also sports new user interface which is sleeker and smoother than ever
before. With its Vista® style background animation support, you can now deliver greater
data input experience to your web application.

The new version of WebCombo.NET solves several problems and limitations that existed in
previous version of WebCombo.NET such as the capability to input free text value and
integration with WebMenu or other container as the dropdown. These new features, along
with dozens others make WebCombo.NET 4.0 the most powerful ComboBox component
and continue to deliver the most advanced functionality that boost developer’s productivity
to the maximum.

II. About WebUI.NET Framework 2007 R1
WebUI.NET Framework 2007 R1 includes more than dozens of new features that help
Intersoft’s upcom ing products to run sm oother in better perform ance, and even more
scalable. The 2007 R1 version of the Framework also includes major architectural changes as
most of them are requested by our customers.

Detailed changes that may affect WebCombo.NET 4.0, as well as new features available in
the Framework 2006 R2 are listed in following section.

Changes in WebUI.NET Framework that may affect WebCombo.NET 4.0
functionality
The following changes have been made to further enhance the performance of the web
application in overall:

 ViewStateStorage. The default value for this feature is now set to Client instead of
PageCache. The decision to switch the default value has been deeply considered by our
development team as we received huge feedbacks from customers.

The Client option is the preferred default value recognizing several considerations:
o The standard ASP.NET controls saved their view state to Client by default.

Therefore our switching to Client value is to simply conforming the standard
mechanism.

o The previous View StateStorage’s default value w hich is PageCache, requires
more server side resources especially the built-in w orker process’ private
memory resources.

If your existing web application used different option for ViewStateStorage other than
PageCache, such as None or Session, then this default value change will not impact the
functionality of WebCombo.NET in your existing web application.

 Selective view state items through new ViewStateItems property. Along with the
default value change in ViewStateStorage to use Client option, we have designed that
only native type properties are saved to the view state by default.

In previous version, all properties of the control are saved to the view state which
including collections, styles and other complex objects – which causing a huge amount
of view state. Because of this huge amount of view state, this makes the Client option of
the ViewStateStorage to be not effective and not practical in high performance usage.

For more information about this new feature, read Selective ViewState saving with the
new ViewStateItems feature.

This new design will not impact to WebCombo.NET when used in Bound mode, because
fundamentally the data collection will be repopulated on each data binding mechanism.
In Unbound mode, the Rows or Cells collection that modified or populated in code
behind (runtime) will not be persisted on each postback. However with the
consideration of full backward compatibility, we have automatically set the
ViewStateItems to BehaviorAndCollection when the WebCombo.NET is configured in
Unbound mode so that the Rows and Cells are still persisted as normally.

With this new design and automatic backward compatibility mechanism for Unbound
mode, WebCombo.NET 4.0 enables your existing web application to gain higher
performance and without affecting the existing implementation.

To learn more about ViewStateStorage and its related features for best performance
and usage, please read Best practices and com m on scenarios for View StateStorage™
usage

New Features in 2007 R1
In this section, you will find a detailed list of new features in WebUI.NET Framework 2007 R1
and how you can utilize them to gain performance benefits for your web application.

 Enhanced View StateStorage™ w ith the new OptimizedState architecture
In previous version of WebUI.NET Framework, the viewstate size of a control is relatively
large since it is using BinarySerialization to serialize the entire control. While the size
issue is not significant when saved to server-side storage, it introduced barrier when
saved to Client.

In this new version, w e have enhanced the View StateStorage™ feature using new
OptimizedState architecture that based on “Delta changes”. The viewstate size of a
control now has been reduced significantly (approximately 60 percent smaller) and thus
allow ViewStateStorage to be saved to Client (as in standard .NET controls).

In 2007 R1, w e have also im proved the View StateStorage™ implementation when saved
to PageCache option. Although the default ViewStateStorage in this new version is set
to Client, you can now safely change it back to PageCache if required. The memory
allocation required by the PageCache implementation has been optimized by 70
percent. The new PageCache implementation has also been improved to avoid memory
leaks.

 Selective ViewState saving with the new ViewStateItems feature
Related to new enhancem ent to View StateStorage™ im plem entation, this new version
of Framework introduced ViewStateItems feature that work in conjunction with
ViewStateStorage.

This feature is resem bled as new property “View StateItem s” w hich is visible to all
Intersoft’s com ponents that used this new version of Fram ew ork. ViewStateItems allow
advanced developers to set what kind/type of items that should be saved in the
ViewState. The default value of ViewStateItems is Behavior.

The following is the explanation of each option available in ViewStateItems:

o Behavior (Default)
This value means only behavior-kind properties that are saved to ViewState.
Behavior properties are native-type properties or enumerator-type properties,
such as EnableAutoPostBack.

o BehaviorAndCollection
This value means behavior-kind properties and collection should be saved to
ViewState. In most cases, Collection-kind properties such as Rows do not
needed to be saved in ViewState because they are either specified in designtime
or repopulated during postback/callback.

o BehaviorAndStyle
This value indicates that behavior-kind properties and style should be saved to
ViewState. Collection-kind properties are not included. If you are using default
style or applying the style at design-time or enabling theme architecture, you
generally do not need to use this option.

o All
This value indicates that all properties in the control should be saved to the
ViewState.
This is the default value of all controls in the previous version of WebUI.NET
Framework. In some rare cases, you might need to simulate the previous
version’s state behavior.

This feature can be set for application-wide via web.config. The key is ViewStateItems.
Sample usage:

<add key=”ISNet.W ebUI.W ebCom bo.v4_0_6200.View StateItem s” value=”Behavior” />

 New Cache-To-Disk option for View StateStorage™
In previous version of Framework, we have introduced three kind of storage for saving
ViewState. They are PageCache, Session and Client.

In 2007 R1, the Framework now includes new option to save the state to physical disk.
The option called FileServer enables the view state to be saved to a physical disk in the
local computer or a shared drive in network.

The FileServer cache option solved many barriers around view state topic. With
FileServer, you no longer have to worry about memory leaks or limited server resources.

Some of benefits using FileServer cache are:

o Highly scalable. You can choose a network drive to store the caches which
enable multiple web servers to access the state.

o Decent performance. With more than dozen of high performance hard drives,
you can choose a near-memory speed with high random access and sequential
read write hard drive to store the caches.

o Easily extensible. Unlike memory (RAM), you can easily extend hard drives with
larger one when it becomes insufficient.

Features of FileServer:

o Automatic cleaning. When the cache for the viewstate has expired, the caches
will be automatically deleted.

o Easily configurable for application-wide through web.config.
o Allow customizations on cache policy and expiration duration.

How-to: Using file server for an instance of control
The following steps demonstrate how to use file server to store the viewstate of
WebCombo.NET 4.0 control:

1. Set ViewStateStorage to FileServer
2. Set ViewStateServerConnection to “path=c:\CacheStorage”

Note: The specified path (eg. c:\CacheStorage) requires read and write permission for
aspnet_wp worker process (in IIS 5.x) or iis_wpg (in IIS 6+)

How-to: Configure file server to use shared network drive
The following steps demonstrate how to use a shared network drive for the file server:

1. Set ViewStateStorage to FileServer
2. Set ViewStateServerConnection to “path=\\CacheServer\CacheStorage”
3. Configure the identity of the account that has access to the server and network

resources in web.config.

Sample web.config setting for identity:

<system.web>

<identity im personate=”true” userNam e=”CacheServer\CacheAccount”
passw ord=”CachePassw ord” />

</system.web>

Parameters for ViewStateServerConnection
The following lists the parameters that can be used in ViewStateServerConnection:

- path. Specify the path of the file server storage.
- expireduration. Specify the time in minutes how long should a cache stay in the

storage.
- expirationpolicy. Specify the expiration policy of the cache. The valid values are

Sliding, Absolute.

Each parameter should be separated by using ; character.

Best practices and com m on scenarios for View StateStorage™ usage
In this section, you can learn the best practices and common scenarios to utilize the
ViewStateStorage and its related features.

1) Most recommended configuration-set
This configuration-set is based on common scenario in web application
development. If your web application used the following methodology, then this
configuration is recommended for you:

o Most user interface settings, behaviors and collection are defined in design
time.

o Styles are either applied in design time or configured in theme architecture
or loaded programmatically.

o Databound controls such as WebGrid or WebCombo are configured to use
datasource controls.

Note that this configuration will automatically become the default when you
upgraded to 2007 R1 (unless you specified other values in web.config)

This configuration consists of:
ViewStateStorage = Client
ViewStateItems = Behavior

2) Configuration for highest performance application
This configuration is recommended if your application requires highest
performance.

When you choose this configuration, you need to design your application carefully
so that all important settings are restored during postback. This is required because
the controls state are not saved and hence will not be restored during postback.

This configuration consists of:
ViewStateStorage = None

This configuration can help to improve performance because there are no extra
efforts required for serializing the control into view state.

Note that this setting does not affect control state which is used to store important
information such as latest user interface state that changed by user in runtime.

3) Configuration for highest availability application
This configuration is preferred for best availability to your web application. This
configuration is suitable for the following scenarios:

o The web application is running on multiple servers (web garderning) and
thus requires the cache to be properly accessible across servers.

o The web application is complex having most configurations populated
dynamically at runtime (through code behind).

o Most user interface settings, behaviors, or collections are configured at
runtime (through code behind).

o You do not want extra efforts in determining which type of property should
be saved to the view state. Fundamentally you would like to force maximum
reliability to your web application.

This configuration consists of:
ViewStateStorage = FileServer
ViewStateItems = All

Notes: ViewStateStorage, ViewStateItems and ViewStateServerConnection can be
applied to application-wide via web.config configuration.

 New Deployment Manager
The new deployment manager introduced in WebUI.NET Framework 2007 R1 is
designated to help developers to easily manage configurations during deployment
phase.

With Deployment Manager, you can now quickly configure the common settings
required in deployment such as entering runtime license keys, entering view state
configurations, and so on -- through user-friendly Windows GUI application.

You can also inspect all available settings that you can easily apply to tune up
application performance, customize application-wide behaviors, customize product-
specific settings and much more.

 New Sm artW ebResources™ Fram ew ork
At Intersoft Solutions, we constantly conduct extensive research and development to
deliver new innovations that help developers become more productive by reducing the
efforts and overwhelming complexity in both development and deployment stage.

The brand-new Sm artW ebResources™ Fram ew ork is one of the exciting technology that
we had to offer in 2007 R1 platform. The key objective of Sm artW ebResources™ is to
eliminate the external physical resources – such as scripts, images, etc – which required
by web components to function properly.

Problems introduced in traditional web components approach
Most web components requires client resources such as scripts, images, stylesheets and
other client files to gear up some advanced and powerful features. Normally these client
resources are delivered through physical client files. In ASP.NET, these files may be

located in aspnet_client folder or other common folder which needs to be mapped
properly into IIS virtual path in order to function properly.

There are several issues with this traditional approach which causing inefficiency, such
as:

o Special IIS virtual directory is required to store the client resources. In several
w ebhosting that doesn’t support m anual virtual directory setup, this can be a
significant deployment problem.

o Special attention and more efforts are required during deployment.
o Versioning problems. This could cause overwhelming complexity while

maintaining the versions of the client resources for specific components.
o Complexity in maintaining control-specific’s resources folder. For instance, som e

scripts are located in folder X, images in folder Y, and other scripts in folder Z.

The solution
The solution to the several issues mentioned above can be achieved by eliminating the
requirements to use physical client resources. Thanks to the new Sm artW ebResources™
Framework, the physical client resources can be completely eliminated.

The client resources are still required in our web components. It is just they are now
stored in “virtual location” w hich doesn’t require the aw areness of developers. They are
fetched and delivered to client (browsers) in a new, different way.

Introducing Sm artW ebResources™
ASP.NET 2.0 introduced Web Resources feature, which allows developers to embed the
client resources into assemblies. They are fetched through the built-in
WebResource.axd HTTP Handler that is specially designed for this purpose.

However, our SmartWebResources technology does not use the built-in ASP.NET 2.0’s
Web Resources due to several limitations and inflexibility and thus does not meet our
requirements and does not suit into our products mechanism.

Sm artW ebResources™ is designed to overcom e the lim itations of ASP.NET 2.0’s W eb
Resources. Furthermore, it is developed with more advanced functionality and with
better performance since it does not use Reflection.

Sm artW ebResources™ takes advantage of custom HTTP Handler extensibility and tightly
integrated into WebUI.NET Framework runtime to deliver high performance, secure and
highly reusable components.

How does Sm artW ebResources™ work
Each product has their own resources such as scripts and images. For instance,
previously these resources are stored in /CommonLibrary/Shared for core framework
resources. W ebGrid’s resources are stored in /Com m onLibrary/W ebGrid/v4_0_6200.

With SmartWebResources, they are now embedded into .NET assembly. Unlike
ASP.NET’s built-in Web Resources which embeds client resources in main assembly,
Sm artW ebResources stores each product’s client resources in separate assem bly. This
enables flexible update (maintenance) to the client resources without has to rebuild the
main server-side assembly.

Sm artW ebResources im plem ents each product’s client resources as separate resources
assembly. Each product that support SmartWebResources technology will have a
companion resources assembly. The resources assembly commonly have this format:
[ProductAssemblyFullName].Resources.dll.

For instance, the assembly hierarchy for WebCombo.NET 4.0 looks like in the following
illustration:

The SmartWebResources works by intercepting the HTTP request through custom HTTP
handler that extended in the Framework runtime. The SmartWebResources will then
dispatch the request and automatically determining the correct resources assembly,
then finally fetching the resource from the assembly and deliver it to the client.

The way it works can be seen in the following illustration:

Client/Browser

•A client resource
such as script or
image is being
requested to
server.

SmartWeb
Resources

•Through HTTP
Handler,
SmartWeb-
Resources dispatch
the resorce
requested.

Response

•After the resource
has been properly
dispatched and
fetched, it is sent
back to client
through HTTP
Response.

SmartWebResources for
Framework

SmartWebResources for
WebCombo.NET 4.0

With SmartWebResources enabled, you no longer need to aware what you should do to
configure the client scripts virtual directory, or where to locate/store it. You simply
ensure that the resources assemblies are in the Bin folder of your application. For more
information, read How-to: Configure SmartWebResources in a web application.

Compatibility with traditional approach
For compatibility and flexibility in deployment, we have decided to keep the support of
traditional client resources approach.

Although Sm artW ebResources™ is the preferred and recom m ended solution for
delivering client resources in a web application, some legacy applications or application
with specific requirements to use physical IIS-based client resources might need to use
traditional physical client files.

To enable com patibility w ith physical client files, see Sm artW ebResources™ M odes topic
below.

In 2007 R1 platform, all products are packaged with both CommonLibrary client
resources (mapped to CommonLibrary virtual directory – this virtual directory will still
be created during installation w henever possible) and Sm artW ebResources™ .

Note that Sm artW ebResources™ is a runtim e feature. During design-time such as in
Preview Mode, the physical resources in CommonLibrary are still required. However,
there are no extra efforts that need to be done by developers in most common cases.

Sm artW ebResources™ m odes
SmartWebResources introduced 5 modes in its initial implementation. These modes are
designed to help developers customize the behavior of SmartWebResources.

Mode Name Description
Auto This is the default value of SmartWebResources. This mode will

automatically determine whether SmartWebResources’
configuration is valid, and whether it is ready to be used. This mode
will attempt to use SmartWebResources whenever possible. When
it detects invalid configuration or usage of product that does not
support SmartWebResources, it will automatically fallback to
traditional physical client resources approach. See fallback
conditions in the following.

Always This mode indicates that SmartWebResources should be always
enabled for the designated control.

Never This mode indicates that SmartWebResources should never be used
for the designated control. You can choose this mode to use
traditional physical client resources.

ScriptOnly This m ode indicates that only “Script”-kind items should be handled
by SmartWebResources.

ResourceOnly This m ode indicates that all other resources except “Script”, such as
images, styles, xml files etc. should be handled.

SmartWebResources automatic fallback conditions. The following lists the conditions
why SmartWebResources decided to fallback to traditional physical client resources.
Note that these conditions only apply for “Auto” m ode.

o The product does not support SmartWebResources. All 2007 R1 products have
been revamped to support SmartWebResources. However, when you tried to
use the new framework in the legacy components such as WebCombo.NET 3.0,
you w ill find out that the Sm artW ebResources didn’t w ork.

o The configuration is not valid. For instance, the http handler is not registered in
the web.config. To learn more about configuring SmartWebResources, see How-
to Configure SmartWebResources in a web application.

o The resources assembly files cannot be found. For instance,
ISNet.WebUI.WebCombo.Resources.dll does not exist in the Bin folder of the
application.

o ScriptDirectory or SharedScriptDirectory has been changed (not default). For
best compatibility, SmartWebResources detects whether an existing web
application was configured to use specific script directory other than the
default. For instance, if the ScriptDirectory is set to “~/Som eO therFolders” in
the control tag or in web.config, then SmartWebResources will not attempt to
enable itself.

o ImagesDirectory has been changed (not default). With same behavior as
ScriptDirectory mentioned above, the SmartWebResources will not attempt to
enable itself when it detects customized ImagesDirectory. This ensures that
your existing web application runs perfectly after you migrate to the new
framework.

o Related to 2 last points above. If ScriptDirectory is customized, but
ImagesDirectory is using default value (not customized), the
SmartWebResources will fallback to ResourceOnly mode. That means, images
and other client resources will still be handled by SmartWebResources. Vice
versa, the SmartWebResources will fallback to ScriptOnly mode if only
ImagesDirectory value is customized.

Other important implementation notes related to SmartWebResources:

o [Write notes here]

Features and benefits introduced by Sm artW ebResources™
o Better throughput: IIS6 Kernel-level Caching
o More secure: Does not use query string
o Faster performance: Does not use Reflection. The SmartWebResources does

not use WebResourceAttribute mechanism, so avoiding the needs to use
Reflection.

o Smaller output: Simpler path formatting and does not use long-encrypted
string. For instance, the built-in ASP.NET 2.0’s W eb Resource com m only
produced a web resource url such as
/WebResource.axd?d=X3DBWN0WSNooBvJskjFXaHbLs_89EdATLyWdaCXXWBu
O_EqnAFr_Di1ag4ubAsDdMu4h_k0tff_bX4YhT_csWQ2&t=63293943774000000
0. In SmartWebResources, the output url format is as simple as
/ISRes.axd?C/WebCombo.js/4072001

o Hassle-free Deployment: No more external client resources are required during
deployment. Only one assembly is required to be copied into your app's bin
folder.

o Reduced Complexity: SmartWebResources includes automatic web resources
configuration. When in auto mode, the client resources will be retrieved from
Web Resources assembly whenever possible. Otherwise, it will automatically
fallback the retrieval from traditional external resources which stored in IIS
virtual directory (also known as CommonLibrary)

o Easy to Configure: Easily configure the settings from application level. You can
also customize the settings for individual control's instances for more precise
control.

o Flexibility: You can easily switch between SmartWebResources or external
resources mode through EnableWebResources setting.

o Seamless integration with VS 2005: The handlers and resources configuration
can seamlessly added to your web application configuration.

o FileSystem Project Support: For better design-time experience in FileSystem
web project, the image resources are now properly displayed in the Visual
Studio 2005 designer. Thanks to SmartWebResources Framework that provides
automatic url conversion mechanism in design-time.

How-to: Configure SmartWebResources in a web application
If you want to configure SmartWebResources after you created a new web application,
please do following steps:

1. Drag one of the 2007 control to the design surface. For instance, WebCombo.
2. Right click on the control, choose Register SmartWebResources™ from the context

menu. See following screenshot.

Note: You only need to perform this instruction once throughout development for the
specific web application.

If you want to configure SmartWebResources on existing web application after you
migrated to 2007 products platform, please do following steps:

1. Ensure assemblies have been updated to use 2007 controls references.
2. Open one of the WebForm in the application that contain at least one Intersoft

control.
3. Right click on the control, choose Register SmartWebResources™ from the context

menu.

 How-to: Modify SmartWebResource mode for application-wide configuration
You can easily apply the SmartWebResource mode to the entire web application
w ithout has to change the value to each control’s instance.

For instance, you may want to set the SmartWebResource mode to handle only script
files. In this scenario, you can do the following to apply the mode into entire web
application:

1. Open web.config file of the designated web application.
2. Insert the following key inside the <appSettings> node.

<add key=”ISNet.WebUI.WebCombo.v4_0_7200.EnableWebResources”
value=”ScriptOnly” />

Note that the key is product and version specific. If you want to apply the same mode to
another Intersoft’s control, then you need to add the key that point to the appropriate
product name and key.

How-to: Ensure SmartWebResources is working properly
You can verify whether SmartWebResources is working properly or not, by looking at
following conditions:

If the mode is set to Auto; scripts, images and other general client resources should be
loaded from http handler. If your page is working fine and the controls are functioning
properly, this indicates that SmartWebResources has been enabled and running
properly.

To know whether a script is loaded from http handler, you can do the following:

1. Right click on the page which is currently running in Internet Explorer browser.
2. Choose View Source.
3. Find <script> tag that refers to Intersoft’s core script. For instance, ISCore.js
4. The src of the <script> tag should look like following

<script type="text/javascript" src="/AppName/ISRes.axd?F/ISCore.js/305000400">

To know whether an image or general resource is loaded from http handler, you can do
the following:

1. Right click on the page which is currently running in Internet Explorer browser.
2. Choose View Source.
3. If you know that a control is rendering an image, you can find the image name in the

Search box.
4. The src of the tag should look following

If there is script error during page loading or missing image sign, it is most likely that the
SmartWebResources has not been configured properly. Please refer to the above topic
in order to configure SmartWebResources properly.

FAQ: I have enabled SmartWebResources, but some of my images are missing. What
happened?
When SmartWebResources is set to Auto (by default), it will automatically attempt to
load scripts, images and other control-specific resources from resource assembly
instead of physical files. If you have just migrated an existing web application to 2007
products platform, there are several cases where the images might be missing as
indicated in the following:

o You have customized the images to use your specific artworks, but the theme
was applied from predefined theme. For instance, when you apply “Office 2003”
style from Layout Manager, it will set the image name properly to all necessary
elements such as the dropdown button and so on. The image name originally
was “O2003_Button_Active.gif”. However, since you have customized the image

to use your own specific artwork, you may have change it to
“Artwork_Button_Active.gif”.

In this context, SmartWebResources will not be able to get
“Artwork_Button_Active.gif” from the resource assembly because it does not
exist in the resource assembly.

There are two methods for resolving this issue:
1. Set SmartWebResources mode to “ScriptOnly”. This enables your web

application to continue using the physical images files that reside in your
application.

2. Move all application-specific images and resources from
CommonLibrary/Images to the web application folder. Next, you change the
ImagesFolder of the control to point to appropriate folder. Eg. ~/Images.

When you changed the ImageFolder, the “auto” mode of
SmartWebResources will not handle the general resources such as images.

This enables you to better partition and organize your own application-
specific resources, while retaining Intersoft’s client resources in their default
folder (normally CommonLibrary/Images).

INFO: What are the included resources in SmartWebResources Resource Assembly?
A SmartWebResources’ resource assembly generally include the following client
resources:

 Script.
Contains scripts required by the control to function properly.

 Images.
Contains default images that required by the control and all images that
required by predefined theme.

 Other client resources:
 XML resources, such as localization files.
 Style sheets for static control-specific rendering.
 Html files for static control-specific functions.

New License Manager
The new license manager is tailored to help you manage your licenses easier than ever.
In our previous product package, you are required to enter license key during
installation. If you are incorrectly entering the key, you need to reinstall the whole
package in order to enter the correct key.

The new License Manager resolves this limitation so that you can enter the purchased
licenses from a standalone Windows GUI application. You are no longer required to
enter license keys during installation.

A significant benefit that resulted from the new licensing concept is the easy upgrading
from trial to retail version. Previously, a prospect customer is required to download the
trial version, then later the retail version after purchase. Starting from 2007 R1, we will
ship only one version of product package. This new packages will default to trial version
on first installation. Later after you purchased a license, you simply launch the License
Manager application and enter the new license key through the GUI. Upon successful
validation, the trial mode will be unlocked automatically. This enables you to work with
development effortlessly and uninterrupted, while dramatically boosting productivity
and efficiency.

 All-new Vista-style user interface for Windows GUI application
All Windows GUI applications are now having consistent, all-new look and feel that
resembles rich Vista-kind style. All component editors, designers and wizards that
derived from WebUI.NET Framework will get this fresh user interface automatically.

The new user interface resembles the new quality of 2007 platform which focused on
user-friendly and rich interfaces that boost developer’s productivity.

Applications that updated to use Vista-style UI are Update Manager 3.0, License
Manager, Deployment Manager, and all component editors.

Benefits introduced in 2007 R1
We highly recommend all our customers to migrate to 2007 R1 products to gain many
benefits introduced in 2007 R1 platform. Some of the benefits are:

 Deliver higher performance application through countless improvements and
enhancements to core-level performance.

 Deliver more scalable application through innovative FileServer feature.

 Increase productivity and reduced efforts in administrative tasks through the new
Deployment Manager.

 Simpler and easier licensing through the new License Manager. This new licensing
manager removes many issues and limitations during installation and un-installation.

 Peace-of-m ind and confident deploym ent. W ith the innovative Sm artW ebResources™
technology, you can totally eliminate the needs to configure client scripts or client
resources used by the control. You also no longer have to worry on client script
versioning issues that usually introduced in traditional components.

Backward Compatibility
The new 2007 R1 Framework is fully compatible with older framework. Therefore, older
products that run on previous version of WebUI.NET Framework can upgrade to 2007 R1
Framework without issues.

However note that the 2007 R1 Framework is specifically designed for 2007 R1 platform
products, such as WebGrid.NET Enterprise 5.0, WebCombo.NET 4.0 and so on. Although it
can be used in older products, it is not recommended to use this new Framework in the
older products. If you decided to use this new Framework in older products, please carefully
test and QA your web application before you deploy it to production server.

When the new Framework is used in older products, some of the new runtime features
available in 2007 R1 will not work. The new runtime features that are not supported while
paired with older products are:

 SmartWebResources.

 FileServer option for ViewStateStorage.

However, other core-level optim izations such as the new O ptim izedState™ and view state
items are applicable.

III. Breaking Changes in WebCombo.NET 4.0

Object model

User Interface

Default Values

Styles

IV. Upgrading from previous version
 Overview

 [notes about the support for ASP.NET 2.0 only]

 Assembly Reference

 Checking Layout after Upgrading

 Checking Styles after Upgrading

 Upgrading WebStyleManager-enabled Web Application

V. W hat’s New in 4.0
 All-new, sleeker User Interface

 Fluid round corner through TrueShape™

 Cleaner and reduced page output through built-in Default Style

 XHTML 1.1 Transitional Support

 Hassle-free deployment through Sm artW ebResources™ technology

 No-codes data binding through DataSourceControl support

 Advanced Load-on-Demand data retrieval through ISDataSourceControl support – an Intersoft’s
proprietary data source control that extends ObjectDataSource functionalities with hierarchical object
binding and automatic load on demand integration.

 Easier to configure using SmartTag Designer

Four new Visual Styles

 Improved Data Caching

 Improved User Interactions

Learning More

