

A masterpiece by Intersoft Solutions Corp – Delivering a better Web experience™. © 2008. All rights reserved.

Large Dataset Performance Demystified

Background
This white paper discusses the new technology introduced in Microsoft.NET Framework 3.5 to resolve

many data-related and performance issues in ASP.NET web development. One of the most common

issues in web development is the performance issue when data binding to a large datasource such as a

table with several hundred thousands or millions of records.

This white paper will demystify the real technologies and behind-the-scene techniques to resolve the

performance issue when binding to large datasource.

Performance Demystified
Several third party vendors have tried to hide this new free technology and brand it for their own

marketing purpose, which causing developers to remain unskillful and have to rely on specific products.

Developers deserve to know the truth, and to learn many of new technologies that have been made

available at no costs, which is the main objective of this white paper.

The following is the illustration of the common performance problem.

ASP.NET

(DataSet)

SQL Server

Select all

Customers

records.

Return

100.000 rows.

Databound

Control

Poor performance.

Databound control processes all

100.000 rows, and returns only 20

rows of paged data.

A masterpiece by Intersoft Solutions Corp – Delivering a better Web experience™. © 2008. All rights reserved.

The resolution to this serious development problem is not bound to a specific “proprietary” technology

by third party vendors. Surprisingly, the resolution is done through Microsoft’s new LINQ to SQL, a new

feature introduced in .NET Framework 3.5 that can be leveraged by developers at no costs.

LINQ to SQL comes to rescue
It’s no secret that the resolution to performance issues when retrieving large datasource is by

performing the operation at database (backend) level. However, some of the operations require

advanced knowledge of Transact SQL. Furthermore, developers are required to write many codes since

the operations are difficult to be generalized (reused) due to complex scenarios. This has caused a great

deal of frustrating performance bottlenecks as the database size is growing significantly.

LINQ to SQL is Microsoft’s answer to this serious bottlenecks and problems. LINQ stands for Language

Integrated Query, and is a subset of Microsoft .NET Framework 3.5. With LINQ, you can write SQL-like

query in .NET managed languages such as C# or VB.NET. The LINQ to SQL means that your C# query will

be automatically translated to Transact SQL behind the scene.

The real power of LINQ to SQL lays on its ability in generating T-SQL query that is compatible with SQL

Server 2000, SQL Server 2005, SQL Server 2008 and SQL Express editions. LINQ to SQL is capable to

generate T-SQL query that involves several operations in one execution, such as: sorting, grouping,

aggregate computation, as well as paging.

Let’s see how LINQ to SQL perfectly resolves performance bottlenecks by returning only the records that

requested by the databound control.

ASP.NET

(LINQ to SQL)

SQL Server
LINQ to SQL translates

the request from

Databound control to

T-SQL query, then

passed to SQL Server.

SQL Server executes the

query and returns only

20 rows, as requested.

“LINQ to SQL”-

enabled

Databound Control

Best performance.

Databound control requests

Customers records where Country is

USA, grouped by ContactTitle,

paged by 20 rows.

Databound control

processes only 20 rows,

which consumes very

little resources.

A masterpiece by Intersoft Solutions Corp – Delivering a better Web experience™. © 2008. All rights reserved.

As described in the above illustration, the LINQ to SQL performs the work necessary to translate the

view requested by the databound control into T-SQL compatible query. This is a great time saving

feature, as developers no longer have to write a lot of codes.

It’s undoubted that “LINQ to SQL” is powerful enough to overcome performance issues and resolve

complex business scenarios. The real question now is when and where to apply this new technology,

and how easy to consume it.

In more realistic questions, are your databound controls “LINQ to SQL”-enabled yet? Have your data

presentation component supported “LINQ to SQL”?

Keep reading on the next sections, as you will be guided to learn more about LINQ to SQL, its syntax, and

how it works.

Basic Data Retrieval Operation Demystified
Basic data retrieval operations are well covered in LINQ to SQL. Two of the most common operations are

sorting and filtering.

Take a look at the simple LINQ query below:

var basicQuery = from customer in dc.Customers

 where customer.Country == "USA"

 orderby customer.Country

 select customer;

The above C# query will be translated into SQL automatically when the query is called. The resulted SQL

statement will look like the following:

SELECT [t0].[CustomerID], [t0].[CompanyName], [t0].[ContactName],

[t0].[ContactTitle], [t0].[Address], [t0].[City], [t0].[Region],

[t0].[PostalCode], [t0].[Country], [t0].[Phone], [t0].[Fax]

FROM [dbo].[Customers] AS [t0]

WHERE [t0].[Country] = @p0

ORDER BY [t0].[Country]',N'@p0 nvarchar(3)',@p0=N'USA'

As you can see, the SQL statement produces direct result from database server to the caller. Direct

result means databound control no longer needs to perform extra works such as local filtering or

ordering, which is often performed at DataSet level.

With LINQ to SQL, the basic data operation such as sorting and filtering is performed at database server.

This translates to significant performance enhancement to application and user interface layer.

A masterpiece by Intersoft Solutions Corp – Delivering a better Web experience™. © 2008. All rights reserved.

Grouping Demystified
In addition to basic data operations, LINQ to SQL also includes built-in support for Grouping operation.

The following query shows how you can group customers by ContactTitle in C# language.

var groupingQuery = from customer in dc.Customers

 group customer by customer.ContactTitle into grouping

 select grouping;

LINQ to SQL will translate the query into T-SQL query, as shown below:

SELECT [t0].[ContactTitle] AS [Key]

FROM [dbo].[Customers] AS [t0]

GROUP BY [t0].[ContactTitle]

Next, upon each loop of the group record, LINQ to SQL will also automatically create a query to return

the records of each group, such as shown in the following:

SELECT [t0].[CustomerID], [t0].[CompanyName], [t0].[ContactName],

[t0].[ContactTitle], [t0].[Address], [t0].[City], [t0].[Region],

[t0].[PostalCode], [t0].[Country], [t0].[Phone], [t0].[Fax]

FROM [dbo].[Customers] AS [t0]

WHERE ((@x1 IS NULL) AND ([t0].[ContactTitle] IS NULL)) OR ((@x1 IS NOT NULL)

AND ([t0].[ContactTitle] IS NOT NULL) AND (@x1 = [t0].[ContactTitle]))',N'@x1

nvarchar(18)',@x1=N'Accounting Manager'

Interestingly, LINQ to SQL supports multiple columns grouping. This allows developers to easily achieve

multiple grouped records in application layer, without have to understand extensive T-SQL knowledge.

The following C# query shows how.

var multipleGroupingQuery = from customer in dc.Customers

 group customer by

 new

 {

 Country = customer.Country,

 ContactTitle = customer.ContactTitle

 };

When grouping is used, LINQ automatically detects the type and create anonymous type behind-the-

scene so that you can access to the results in strongly-typed programming model. See below example

for iterating the groups and records:

foreach (var group in multipleGroupingQuery)

 {

 Response.Write(group.Key.Country + " > " + group.Key.ContactTitle

 + "
");

A masterpiece by Intersoft Solutions Corp – Delivering a better Web experience™. © 2008. All rights reserved.

 foreach (var customer in group)

 {

 Response.Write(" " + customer.CustomerID + "
");

 }

 }

Aggregate Computation Demystified
LINQ to SQL provides built-in aggregate computation, such as:

 Count

 Sum

 Average

 Min

 Max

The following C# code shows you how to compute the Count of orders data.

int ordersCount = (from order in dc.Orders

 where order.Customer.Country == "USA"

 select order.CustomerID).Count();

You can also create a base query, and perform different aggregate functions on the base query. For

example:

var baseQuery = from order in dc.Orders

 where order.Customer.Country == "USA"

 select order.Freight;

decimal? freightSum = baseQuery.Sum();

decimal? freigtAverage = baseQuery.Average();

The aggregate methods such as Count, Sum and Average are extension methods introduced in .NET

Framework 3.5. The interesting part is that LINQ will automatically detect the result of the query, and

thus has the capability to obtain the correct type of the aggregation method’s output.

For instance in the above sample, the baseQuery.Sum() is assigned to a decimal? type. If you assign it to

decimal or int, the compiler will throw an error. The LINQ and integrated compiler capability means that

you can write better quality codes and reduce errors.

To learn more about aggregate functions in LINQ to SQL, please see References below.

A masterpiece by Intersoft Solutions Corp – Delivering a better Web experience™. © 2008. All rights reserved.

Paging Demystified
Paging is one of the most challenging operations in data-driven application development. There have

been many paging approaches in ASP.NET web development, such as performing paging at databound

control level, or at application layer, or even at the client side. However, none of the approaches are

able to resolve the performance bottlenecks as the database table grows.

The best approach in order to get the best performance is back to the application developer. This

means, developers are required to write codes to perform the paging at the database side, and then

return it to the corresponding middle layer to be processed. However, this manual approach could cause

a great deal of frustration as developer needs to spend time in writing repetitive codes.

LINQ to SQL is Microsoft’s answer to data paging challenges for data-driven application development.

With LINQ to SQL, developers no longer need to manually write the codes to perform paging, while

providing complete solution that resolve data paging challenges at the same time.

Take a look at how easy it is to get a paged Orders data from Northwind database.

var pagingQuery = (from order in dc.Orders

 select order).Take(20).Skip(60);

The above C# query instructs the database server to get all orders data and take only 20 records after

skipping the first 60 records.

Interestingly, LINQ to SQL translates the query into a Transact-SQL statement that is compatible with all

versions of SQL Server. The produced T-SQL query looks like below.

SELECT [t2].[OrderID], [t2].[CustomerID], [t2].[EmployeeID], [t2].[OrderDate],

[t2].[RequiredDate], [t2].[ShippedDate], [t2].[ShipVia], [t2].[Freight], [t2].[ShipName],

[t2].[ShipAddress], [t2].[ShipCity], [t2].[ShipRegion], [t2].[ShipPostalCode], [t2].[ShipCountry]

FROM (

 SELECT ROW_NUMBER() OVER (ORDER BY [t1].[OrderID], [t1].[CustomerID], [t1].[EmployeeID],

[t1].[OrderDate], [t1].[RequiredDate], [t1].[ShippedDate], [t1].[ShipVia], [t1].[Freight],

[t1].[ShipName], [t1].[ShipAddress], [t1].[ShipCity], [t1].[ShipRegion], [t1].[ShipPostalCode],

[t1].[ShipCountry]) AS [ROW_NUMBER], [t1].[OrderID], [t1].[CustomerID], [t1].[EmployeeID],

[t1].[OrderDate], [t1].[RequiredDate], [t1].[ShippedDate], [t1].[ShipVia], [t1].[Freight],

[t1].[ShipName], [t1].[ShipAddress], [t1].[ShipCity], [t1].[ShipRegion], [t1].[ShipPostalCode],

[t1].[ShipCountry]

 FROM (

 SELECT TOP (20) [t0].[OrderID], [t0].[CustomerID], [t0].[EmployeeID], [t0].[OrderDate],

[t0].[RequiredDate], [t0].[ShippedDate], [t0].[ShipVia], [t0].[Freight], [t0].[ShipName],

[t0].[ShipAddress], [t0].[ShipCity], [t0].[ShipRegion], [t0].[ShipPostalCode], [t0].[ShipCountry]

 FROM [dbo].[Orders] AS [t0]

) AS [t1]

) AS [t2]

WHERE [t2].[ROW_NUMBER] > @p0 ORDER BY [t2].[ROW_NUMBER]

A masterpiece by Intersoft Solutions Corp – Delivering a better Web experience™. © 2008. All rights reserved.

Putting All Together
Now that we have touched the surface of LINQ to SQL, a new powerful query language feature

introduced in .NET Framework 3.5. LINQ to SQL enables you write even more powerful queries such as

joining, querying against relational tables, and much more.

The following sample shows how you can use LINQ to SQL to get the data shape that you desire, by

combining several data operations (sorting, filtering and paging) at once.

var combinedQuery = (from order in dc.Orders

 where

 order.Customer.ContactTitle.StartsWith("Sales")

 && order.Customer.Region != null

 orderby order.OrderDate descending

 select new

 {

 ContactName = order.Customer.ContactName,

 OrderDate = order.OrderDate,

 ShipName = order.ShipName,

 ShipCountry = order.ShipCountry,

 OrdersCount = order.Order_Details.Count(),

 OrdersAverage = order.Order_Details.Average(

x => (x.Quantity * x.UnitPrice) - Convert.ToDecimal(x.Discount))

 }).Take(10).Skip(5);

The above query is quite straightforward and self-explanatory even though it may look complex at first.

The query also transforms the existing view into a new projection that contains selective properties. As

you can see, it also supports in-line aggregate inside the select statement, allowing you to achieve the

data shape that you desire in one call.

The following is the resulted T-SQL of the above query:

SELECT [t7].[ContactName], [t7].[OrderDate], [t7].[ShipName], [t7].[ShipCountry], [t7].[value] AS

[OrdersCount], [t7].[value2] AS [OrdersAverage]

FROM (

 SELECT ROW_NUMBER() OVER (ORDER BY [t6].[OrderDate] DESC) AS [ROW_NUMBER],

[t6].[ContactName], [t6].[OrderDate], [t6].[ShipName], [t6].[ShipCountry], [t6].[value],

[t6].[value2]

 FROM (

 SELECT TOP (10) [t5].[ContactName], [t5].[OrderDate], [t5].[ShipName],

[t5].[ShipCountry], [t5].[value], [t5].[value2]

 FROM (

 SELECT [t1].[ContactName], [t0].[OrderDate], [t0].[ShipName], [t0].[ShipCountry], (

 SELECT COUNT(*)

 FROM [dbo].[Order Details] AS [t2]

 WHERE [t2].[OrderID] = [t0].[OrderID]

A masterpiece by Intersoft Solutions Corp – Delivering a better Web experience™. © 2008. All rights reserved.

) AS [value], (

 SELECT AVG([t4].[value])

 FROM (

 SELECT ((CONVERT(Decimal(29,4),[t3].[Quantity])) * [t3].[UnitPrice]) -

(CONVERT(Decimal(29,4),[t3].[Discount])) AS [value], [t3].[OrderID]

 FROM [dbo].[Order Details] AS [t3]

) AS [t4]

 WHERE [t4].[OrderID] = [t0].[OrderID]

) AS [value2], [t1].[ContactTitle], [t1].[Region]

 FROM [dbo].[Orders] AS [t0]

 LEFT OUTER JOIN [dbo].[Customers] AS [t1] ON [t1].[CustomerID] = [t0].[CustomerID]

) AS [t5]

 WHERE ([t5].[ContactTitle] LIKE @p0) AND ([t5].[Region] IS NOT NULL)

 ORDER BY [t5].[OrderDate] DESC

) AS [t6]

) AS [t7]

WHERE [t7].[ROW_NUMBER] > @p1

ORDER BY [t7].[ROW_NUMBER]',N'@p0 nvarchar(6),@p1 int',@p0=N'Sales%',@p1=5

LinqDataSource control for ASP.NET web development.
LinqDataSource is a new datasource control that comes along with ASP.NET 3.5, which wraps most of

the LINQ to SQL functionality into one simple, easy-to-use datasource control.

LinqDataSource supports some basic LINQ to SQL features such as:

 Where

 OrderBy

 OrderGroupBy

 GroupBy

 Transaction operations, such as Insert, Update and Delete.

 AutoPage

 AutoSort

The only lacking feature in LinqDataSource is the aggregate computation predicate, which is not

currently supported in either Select property.

A masterpiece by Intersoft Solutions Corp – Delivering a better Web experience™. © 2008. All rights reserved.

Automating Intersoft Databound Controls
Now we have learnt the benefits of LINQ to SQL, and how to consume it using LINQ query language. In

this section, we’ll look how Intersoft is taking advantage of this powerful technology in their databound

controls.

The latest version of Intersoft’s WebUI Suite (2008 R2 Build 207+) has been significantly improved to

support LINQ to SQL. The result is obvious – striking fast data retrieval operation and manipulation.

Intersoft’s flagship databound controls – WebGrid.NET Enterprise™ and WebCombo.NET™ – sets a new

record in performance benchmark, outpacing competing products that were using proprietary, slower

and unproven mechanism.

WebGrid.NET Enterprise™

WebGrid.NET Enterprise 6.0 (Build 207) has implemented full support for LINQ to SQL technology via

LinqDataSource control. With a simple LinqDataSource control in your page, WebGrid will be able to

perform the following operations automatically – without the needs to write a single line of code:

 Column sorting, supporting multiple columns.

 Column filtering, supporting all expressions and operators that currently available in WebGrid.

 Column grouping, supporting multiple groups.

 Data paging, supporting both VirtualLoad™ and ClassicPaging™.

 Data transactions, such as adding, editing and deleting. Also supports data transactions when

the data is grouped, which is not supported by LINQ to SQL by default.

In order to provide more advanced functionality that doesn’t exist in standard LinqDataSource control,

we have developed a new datasource control that derives from LinqDataSource. We’re proud to

introduce ISLinqDataSource, a free download for every .NET developer who wants to build blazing fast

web application.

When WebGrid is bound to ISLinqDataSource, the following features will be automatically processed by

using LINQ to SQL for best performance:

 Column Total, with per page aggregation.

 Column Total with global data aggregation, supporting following functions natively: Count, Sum,

Avg, Min and Max.

WebCombo.NET™

WebCombo.NET 4.0 (Build 207) has been enhanced to fully support LinqDataSource control as well.

When bound to LinqDataSource, WebCombo will perform the query and paging on the database server

through LINQ to SQL, while consistently support essential WebCombo features such as

AllowWildcardSearch, AdditionalSearchFields and Linked WebCombo.

Together with the state-of-the-art AJAX architecture, this improvement enables WebCombo to retrieve

data from million records table in a fraction of seconds. This translates to improved user experience.

A masterpiece by Intersoft Solutions Corp – Delivering a better Web experience™. © 2008. All rights reserved.

Next Steps
Read Intersoft WebUI and LINQ to SQL Walkthroughs.

Download WebUI Studio.NET 2008 R2.

Download latest builds (Build 207 – September 2008).

Download Intersoft WebUI and LINQ to SQL samples.

Download ISLinqDataSource control – the blazing fast Linq datasource – for free!

Conclusion
Congratulations! You have just upgraded your programming knowledge in cutting-edge technology

around Microsoft.NET 3.5, LINQ to SQL, as well as understanding on how to resolve complex business

scenarios by using these new features.

As you already understand, there is no need of such “non sense” proprietary third party technology to

achieve “blazing fast” with “lightning speed” data retrieval on large data source. It is now revealed that

the behind-the-scene technology used is Microsoft’s new LINQ to SQL feature, which can be utilized by

.NET developers at no costs.

Start using LINQ to SQL technology in your application today to avoid performance bottlenecks and

scalability issues in the future.

References
 LINQ to SQL (http://msdn.microsoft.com/en-us/library/bb386976.aspx)

 Query Concepts in LINQ to SQL (http://msdn.microsoft.com/en-us/library/bb387006.aspx)

 What you can do with LINQ to SQL (http://msdn.microsoft.com/en-us/library/bb882643.aspx)

 Query Examples (http://msdn.microsoft.com/en-us/library/bb386913.aspx)

 Frequently Asked Questions (http://msdn.microsoft.com/en-us/library/bb386929.aspx)

 LinqDataSource Overview (http://msdn.microsoft.com/en-us/library/bb547113.aspx)

http://www.intersoftpt.com/WebUIStudio/LinqWalkthroughs.pdf
http://www.webuistudio.net/try
http://dev2.intersoftpt.com/
http://www.intersoftpt.com/WebUIStudio/WebUIStudio_LinqSamples.zip
http://www.intersoftpt.com/WebGrid/ISLinqDataSource.zip
http://msdn.microsoft.com/en-us/library/bb386976.aspx
http://msdn.microsoft.com/en-us/library/bb387006.aspx
http://msdn.microsoft.com/en-us/library/bb882643.aspx
http://msdn.microsoft.com/en-us/library/bb386913.aspx
http://msdn.microsoft.com/en-us/library/bb386929.aspx
http://msdn.microsoft.com/en-us/library/bb547113.aspx

