
Integrate WebScheduler to Microsoft
SharePoint 2007

This white paper describes the techniques and walkthrough about integrating WebScheduler to

Microsoft SharePoint 2007 as webpart.

Prerequisites
The following are the required software and development environments before proceeding.

 Windows 2003 Server with IIS installed.

 Microsoft Office SharePoint Server 2007.

 Intersoft WebUI Studio 2009 R2.

SharePoint Server 2007 Virtual PC Image can be downloaded from Microsoft Website at here and here

for the 30-day full trial of Intersoft WebUI Studio 2009 R2.

http://www.microsoft.com/downloads/details.aspx?FamilyID=67f93dcb-ada8-4db5-a47b-df17e14b2c74&DisplayLang=en
http://www.intersoftpt.com/WebUIStudio/Try

In summary, we are going to create a Visual Studio Web Application project, create a Web User Control

(ASCX), a class that can act as the Web Part interface to our ASCX Web User Control and ASP.NET web

page for testing and debugging.

Creating ASP.NET Web Application
1. In Visual Studio, choose ASP.NET Web Application and give it a name, for example:

WebSchedulerWebParticle.

Create a new ASP.NET Web Application

2. Add the SharePoint.dll to as a reference. The file is by default located in

%ProgramFiles%\Microsoft Shared\Web Server Extensions\12\ISAPI Directory.

3. Add the follow Intersoft’s references:

 ISNet.dll

 ISNet.WebUI..dll

 ISNet.WebUI.ISDataSource.dll

 ISNet.WebUI.WebCombo.dll

 ISNet.WebUI.WebCombo.Resources.dll

 ISNet.WebUI.WebInput.dll

 ISNet.WebUI.WebInput.Resources.dll

 ISNet.WebUI.WebDesktop.dll

 ISNet.WebUI.WebDesktop.Resources.dll

 ISNet.WebUI.WebScheduler.dll

 ISNet.WebUI.WebScheduler.Resources.dll

All files can be found under %ProgramFiles%\Intersoft Solutions\WebUI Studio for ASP.NET*

Create a User Control and bind WebScheduler to Intersoft Datasource

(ISDataSource) control
1. Add a Web User Control file to your project and name it WebSchedulerUC.ascx.

2. Bind WebScheduler to ISDataSource. A through data binding tutorial can be found in

WebScheduler’s documentation. (WebScheduler’s documentation > Walkthrough Topics >

DataBinding).

Create a class file
1. Add a class file to your project give it a name. For example: WebParticle.cs. This class

acts the Web Part interface to the earlier ASCX WebScheduler User Control.

It will be inherited from Microsoft.SharePoint.WebPartPages.WebPart and override the

CreateChildControls and RenderContents methods to load and render the ASCX Web Control

created earlier.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using Microsoft.SharePoint.WebPartPages;

using System.Web.UI;

namespace WebSchedulerWebParticle

{

 public class WebParticle : Microsoft.SharePoint.WebPartPages.WebPart

 {

 private Control _control;

 private string _exceptions = "";

 protected string UserControlPath = @"~/usercontrols/";

 protected string UserControlFileName = @"WebSchedulerUC.ascx";

 protected override void CreateChildControls()

 {

 try

 {

 // load the control ... this could require GAC installation

 // of your DLL to avoid File.IO permissions denial exceptions

 _control = this.Page.LoadControl(UserControlPath +

UserControlFileName);

 // add it to the controls collection to wire up events

 Controls.Add(_control);

 }

 catch (Exception CreateChildControls_Exception)

 {

 _exceptions += "CreateChildControls_Exception: " +

CreateChildControls_Exception.Message;

 }//end catch

 finally

 {

 base.CreateChildControls();

 }//end try/catch/finally block

 }//end protected override void CreateChildControls()

 protected override void RenderContents(HtmlTextWriter writer)

 {

 // not much to do here except to programmatically and cleanly

 // handle exceptions

 try

 {

 base.RenderContents(writer);

 }

 catch (Exception RenderContents_Exception)

 {

 _exceptions += "RenderContents_Exception: " +

RenderContents_Exception.Message;

 }

 finally

 {

 if (_exceptions.Length > 0)

 {

 writer.WriteLine(_exceptions);

 }

 }//end try/catch/finally

 }//end protected override void RenderContents(HtmlTextWriter writer)

 }

}

Signing and Building the Project
Next step is to assign a strong name key and sign the control. This step ensures the WebPart and Web

User Control live in Microsoft Office SharePoint Server and Global Assembly cache.

1. Simply right-click on the project in Solution Explorer and select Properties. Check the "Sign the

assembly" box and select <New...> from the "Choose a strong name key file" drop down list.

2. Enter a name (for example: WebSchedulerWebParticle.snk) in the "Key file name" field. Uncheck

the box marked "Protect my key file with a password" and click “OK”.

3. The WebSchedulerWebParticle.snk strong name key file is added to your project. Now, build

your project.

Deploying your custom WebPart and Web User Control
Since we are using the WebParticle approach, we need to deploy both the ASCX file and the WebPart

compiled in a .dll. Here are the steps.

1. Build Project and Copy User Control ASCX to SharePoint folder

Use the Visual Studio Build menu to build your project. Next, copy WebSchedulerUC.ascx Web

User Control to /UserControls/ directory.

2. Copy App_Code, App_Data to SharePoint folder

Since WebScheduler user control is bound to data through ISDataSource. It’s important for you

to copy the data sets and database along. By default, all are located in App_Code and App_Data

folder.

3. Drag and drop WebSchedulerWebParticle.dll into GAC

The Global Assembly Cache (GAC) is a special folder located at %WINDIR%\Assembly.

Remember to drag-drop the assembly, not copy-paste it.

4. Finding the public KeyToken of the WebPart assembly

Go to your GAC (or %WINDIR%\Assembly) and scroll to your WebPart assembly.

This information is required when marking the WebPart assembly as a safe control. Open

SharePoint’s Web.config file. Under the <SafeControls> add a new entry pointing to your Web

Part assembly with its PublicKeyToken.

<SafeControls>

 …

 …

 <SafeControl Assembly="WebSchedulerWebParticle, Version=1.0.0.0,

Culture=neutral, PublicKeyToken=fac546c5573ea5c5"

Namespace="WebSchedulerWebParticle" TypeName="WebParticle" Safe="True"/>

 <SafeControl Assembly="WebSchedulerWebParticle, Version=1.0.0.0,

Culture=neutral, PublicKeyToken=fac546c5573ea5c5"

Namespace="WebSchedulerWebParticle" TypeName="WebParticleControl"

Safe="True"/>

 <SafeControl Assembly="WebSchedulerWebParticle, Version=1.0.0.0,

Culture=neutral, PublicKeyToken=fac546c5573ea5c5" Namespace="SmartParticles"

TypeName="*" Safe="True"/>

</SafeControls>

5. Add your WebPart assembly to the assemblies section in SharePoint's Web.config file

This is an important part where you need to provide more information about your custom

WebPart to SharePoint as it doesn’t check the SafeControl section until it loads the Assembly

using Reflection. The first thing to do is that SharePoint must know the location of your

WebPart. You can place your assembly inside the SharePoint folder, but it’s not a good practice

in the long run. When you make any changes in the future, you will need to update the assembly

in two different places. The best thing to do is to have a centralized location where you can refer

to it via Web.config. Here is how you tell SharePoint the location of your WebPart.

<assemblies>

 <add assembly="Microsoft.SharePoint, Version=12.0.0.0, Culture=neutral,

PublicKeyToken=71e9bce111e9429c" />

 <add assembly="ISNet.WebUI, Version=3.0.5000.1, Culture=neutral,

PublicKeyToken=b1f2a8511635667a" />

 <add assembly="ISNet, Version=3.0.5000.1, Culture=neutral,

PublicKeyToken=b1f2a8511635667a" />

 <add assembly="WebSchedulerWebParticle, Version=1.0.0.0, Culture=neutral,

PublicKeyToken=fac546c5573ea5c5" />

</assemblies>

6. Add a connection string for ISDataSource in SharePoint’s Web.config file

Here is how you add a new connection string for ISDataSource inside SharePoint’s Web.config

file.

 <connectionStrings>

 <add name="WebSchedulerDataConnectionString"

connectionString="Provider=Microsoft.Jet.OLEDB.4.0;Data

Source=|DataDirectory|\WebSchedulerData.mdb;Persist Security Info=True"

providerName="System.Data.OleDb"/>

 </connectionStrings>

7. Compile your project.

Populate your custom WebPart to WebPart’s Gallery
1. Go to Site Action >Site Settings > Modify All Settings.

2. In Site Settings, go to Gallery column and choose WebPart

3. In Web Part Gallery, Click New > Checked the WebPart name

(WebSchedulerWebParticle.WebParticle) > Populate Gallery.

4. Now, we have the WebScheduler User Control WebPart.

Creating a SharePoint page with WebScheduler User Control WebPart
1. Go to View All Site Content > Create.

2. On the WebPages column, click the Web Part Pages.

3. Enter your SharePoint page name hit the Create button.

4. Navigate to the newly created page and edit it. Add your custom WebPart

(WebSchedulerWebParticle) from WebPart gallery.

5. Apply the changes to see the final result of the WebTextEditor integration in Sharepoint such as

shown in the screenshot below .

